The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 121 – 140 of 283

Showing per page

Mesures spectrales de Walsh associées à certaines suites arithmétiques

Jean Coquet (1985)

Annales de l'institut Fourier

On associe à certaines suites g de nombres complexes une mesure borélienne positive μ g sur le tore dont la transformée de Fourier-Walsh est une suite de moyennes liées à g . La nature de μ g (discrète, continue) est discutée dans quelques cas : suites presque-périodiques et certaines suites arithmétiques.

Necessary condition for measures which are ( L q , L p ) multipliers

Bérenger Akon Kpata, Ibrahim Fofana, Konin Koua (2009)

Annales mathématiques Blaise Pascal

Let G be a locally compact group and ρ the left Haar measure on G . Given a non-negative Radon measure μ , we establish a necessary condition on the pairs q , p for which μ is a multiplier from L q G , ρ to L p G , ρ . Applied to n , our result is stronger than the necessary condition established by Oberlin in [14] and is closely related to a class of measures defined by Fofana in [7].When G is the circle group, we obtain a generalization of a condition stated by Oberlin [15] and improve on it in some cases.

On Beurling measure algebras

Ross Stokke (2022)

Commentationes Mathematicae Universitatis Carolinae

We show how the measure theory of regular compacted-Borel measures defined on the δ -ring of compacted-Borel subsets of a weighted locally compact group ( G , ω ) provides a compatible framework for defining the corresponding Beurling measure algebra ( G , ω ) , thus filling a gap in the literature.

On certain regularity properties of Haar-null sets

Pandelis Dodos (2004)

Fundamenta Mathematicae

Let X be an abelian Polish group. For every analytic Haar-null set A ⊆ X let T(A) be the set of test measures of A. We show that T(A) is always dense and co-analytic in P(X). We prove that if A is compact then T(A) is G δ dense, while if A is non-meager then T(A) is meager. We also strengthen a result of Solecki and we show that for every analytic Haar-null set A, there exists a Borel Haar-null set B ⊇ A such that T(A)∖ T(B) is meager. Finally, under Martin’s Axiom and the negation of Continuum Hypothesis,...

On concentrated probabilities on non locally compact groups

Wojciech Bartoszek (1996)

Commentationes Mathematicae Universitatis Carolinae

Let G be a Polish group with an invariant metric. We characterize those probability measures μ on G so that there exist a sequence g n G and a compact set A G with   μ * n ( g n A ) 1   for all n .

On continuity of measurable group representations and homomorphisms

Yulia Kuznetsova (2012)

Studia Mathematica

Let G be a locally compact group, and let U be its unitary representation on a Hilbert space H. Endow the space ℒ(H) of bounded linear operators on H with the weak operator topology. We prove that if U is a measurable map from G to ℒ(H) then it is continuous. This result was known before for separable H. We also prove that the following statement is consistent with ZFC: every measurable homomorphism from a locally compact group into any topological group is continuous.

Currently displaying 121 – 140 of 283