The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 201 – 220 of 271

Showing per page

On the power boundedness of certain Volterra operator pencils

Dashdondog Tsedenbayar (2003)

Studia Mathematica

Let V be the classical Volterra operator on L²(0,1), and let z be a complex number. We prove that I-zV is power bounded if and only if Re z ≥ 0 and Im z = 0, while I-zV² is power bounded if and only if z = 0. The first result yields | | ( I - V ) - ( I - V ) n + 1 | | = O ( n - 1 / 2 ) as n → ∞, an improvement of [Py]. We also study some other related operator pencils.

On the semilinear integro-differential nonlocal Cauchy problem

Piotr Majcher, Magdalena Roszak (2005)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper, we prove an existence theorem for the pseudo-non-local Cauchy problem x ' ( t ) + A x ( t ) = f ( t , x ( t ) , t t k ( t , s , x ( s ) ) d s ) , x₀(t₀) = x₀ - g(x), where A is the infinitesimal generator of a C₀ semigroup of operator T ( t ) t > 0 on a Banach space. The functions f,g are weakly-weakly sequentially continuous and the integral is taken in the sense of Pettis.

Currently displaying 201 – 220 of 271