Hankel transforms in generalized Fock spaces.
We study Hankel operators and commutators that are associated with a symbol and a kernel function. If the kernel function satisfies an upper bound condition, we obtain a sufficient condition for commutators to be bounded or compact. If the kernel function satisfies a local bound condition, the sufficient condition turns out to be necessary. The analytic and harmonic Bergman kernels satisfy both conditions, therefore a recent result by Wu on Hankel operators on harmonic Bergman spaces is extended....
Let Ω ⊂ Rn be a strongly Lipschitz domain. In this article, the authors study Hardy spaces, Hpr (Ω)and Hpz (Ω), and Hardy-Sobolev spaces, H1,pr (Ω) and H1,pz,0 (Ω) on , for p ∈ ( n/n+1, 1]. The authors establish grand maximal function characterizations of these spaces. As applications, the authors obtain some div-curl lemmas in these settings and, when is a bounded Lipschitz domain, the authors prove that the divergence equation div u = f for f ∈ Hpz (Ω) is solvable in H1,pz,0 (Ω) with suitable...
Let be a bounded domain in . The paper deals with inequalities of Hardy type related to the function spaces and .
Mathematics Subject Classification: 26D10, 46E30, 47B38We prove the Hardy inequality and a similar inequality for the dual Hardy operator for variable exponent Lebesgue spaces.
In this article we study bilinear operators given by inner products of finite vectors of Calderón-Zygmund operators. We find that necessary and sufficient condition for these operators to map products of Hardy spaces into Hardy spaces is to have a certain number of moments vanishing and under this assumption we prove a Hölder-type inequality in the Hp space context.
We continue the study of multilinear operators given by products of finite vectors of Calderón-Zygmund operators. We determine the set of all r ≤ 1 for which these operators map products of Lebesgue spaces Lp(Rn) into the Hardy spaces Hr(Rn). At the endpoint case r = n/(n + m + 1), where m is the highest vanishing moment of the multilinear operator, we prove a weak type result.
Let {Tt}t>0 be the semigroup of linear operators generated by a Schrödinger operator -A = Δ - V, where V is a nonnegative potential that belongs to a certain reverse Hölder class. We define a Hardy space HA1 by means of a maximal function associated with the semigroup {Tt}t>0. Atomic and Riesz transforms characterizations of HA1 are shown.
Our concern in this paper is to describe a class of Hardy spaces Hp(D) for 1 ≤ p < 2 on a Lipschitz domain D ⊂ Rn when n ≥ 3, and a certain smooth counterpart of Hp(D) on Rn-1, by providing an atomic decomposition and a description of their duals.
Let be the semigroup of linear operators generated by a Schrödinger operator -L = Δ - V with V ≥ 0. We say that f belongs to if . We state conditions on V and which allow us to give an atomic characterization of the space .
The aim of this paper is to introduce some new fixed point results of Hardy-Rogers-type for ---contraction in a complete metric space. We extend the concept of -contraction into an ---contraction of Hardy-Rogers-type. An example has been constructed to demonstrate the novelty of our results.
We prove some Hardy-type inequalities related to quasilinear second-order degenerate elliptic differential operators . If is a positive weight such that , then the Hardy-type inequalityholds. We find an explicit value of the constant involved, which, in most cases, results optimal. As particular case we derive Hardy inequalities for subelliptic operators on Carnot Groups.