The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The aim of this paper is to prove two new uncertainty principles for the Dunkl-Gabor transform. The first of these results is a new version of Heisenberg’s uncertainty inequality which states that the Dunkl-Gabor transform of a nonzero function with respect to a nonzero radial window function cannot be time and frequency concentrated around zero. The second result is an analogue of Benedicks’ uncertainty principle which states that the Dunkl-Gabor transform of a nonzero function with respect to...
Suppose is the Hardy space of the unit disc in the complex plane, while is
an inner function. We give conditions for a sequence of normalized reproducing kernels in
the model space to be asymptotically close to an
orthonormal sequence. The completeness problem is also investigated.
We study Hankel operators and commutators that are associated with a symbol and a kernel function. If the kernel function satisfies an upper bound condition, we obtain a sufficient condition for commutators to be bounded or compact. If the kernel function satisfies a local bound condition, the sufficient condition turns out to be necessary. The analytic and harmonic Bergman kernels satisfy both conditions, therefore a recent result by Wu on Hankel operators on harmonic Bergman spaces is extended....
In an earlier paper, the first two authors have shown that the convolution of a function continuous on the closure of a Cartan domain and a -invariant finite measure on that domain is again continuous on the closure, and, moreover, its restriction to any boundary face depends only on the restriction of to and is equal to the convolution, in , of the latter restriction with some measure on uniquely determined by . In this article, we give an explicit formula for in terms of ,...
In this paper, we give an integral representation for the boundary values of derivatives of functions of the de Branges–Rovnyak spaces , where is in the unit ball of . In particular, we generalize a result of Ahern–Clark obtained for functions of the model spaces , where is an inner function. Using hypergeometric series, we obtain a nontrivial formula of combinatorics for sums of binomial coefficients. Then we apply this formula to show the norm convergence of reproducing kernel of evaluation...
Let be a measure on a domain in such that the Bergman space
of holomorphic functions in possesses a reproducing kernel and
. The Berezin transform associated to is the
integral...
In 1966 de Branges and Rovnyak introduced a concept of complementation associated to a contraction between Hilbert spaces that generalizes the classical concept of orthogonal complement. When applied to Toeplitz operators on the Hardy space of the disc, H2, this notion turned out to be the starting point of a beautiful subject, with many applications to function theory. The work has been in constant progress for the last few years. We study here the multipliers of some de Branges-Rovnyak spaces...
The paper the title refers to is that in Proceedings of the Edinburgh Mathematical Society, 40 (1997), 367-374. Taking it as an excuse we intend to realize a twofold purpose:
1° to atomize that important result showing by the way connections which are out of favour,
2° to rectify a tiny piece of history.
The objective 1° is going to be achieved by adopting means adequate to goals; it is of great gravity and this is just Mathematics. The other, 2°, comes...
Dans cet article, en utilisant les algèbres de Jordan euclidiennes, nous étudions l’espace de Hardy d’un espace symétrique de type Cayley . Nous montrons que le noyau de Cauchy-Szegö de s’exprime comme somme d’une série faisant intervenir la fonction de Harish-Chandra de l’espace symétrique riemannien , la fonction de l’espace symétrique -dual de et les fonctions sphériques de l’espace symétrique ordonné . Nous établissons, dans le cas où la dimension de l’algèbre de Jordan associée...
The purpose of this paper is to study the Sarason’s problem on Fock spaces of polyanalytic functions. Namely, given two polyanalytic symbols and , we establish a necessary and sufficient condition for the boundedness of some Toeplitz products subjected to certain restriction on and . We also characterize this property in terms of the Berezin transform.
Currently displaying 21 –
40 of
71