The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 741 – 760 of 1286

Showing per page

Pointwise inequalities and approximation in fractional Sobolev spaces

David Swanson (2002)

Studia Mathematica

We prove that a function belonging to a fractional Sobolev space L α , p ( ) may be approximated in capacity and norm by smooth functions belonging to C m , λ ( ) , 0 < m + λ < α. Our results generalize and extend those of [12], [4], [14], and [11].

Pointwise inequalities for Sobolev functions and some applications

Bogdan Bojarski, Piotr Hajłasz (1993)

Studia Mathematica

We get a class of pointwise inequalities for Sobolev functions. As a corollary we obtain a short proof of Michael-Ziemer’s theorem which states that Sobolev functions can be approximated by C m functions both in norm and capacity.

Pointwise multipliers on weighted BMO spaces

Eiichi Nakai (1997)

Studia Mathematica

Let E and F be spaces of real- or complex-valued functions defined on a set X. A real- or complex-valued function g defined on X is called a pointwise multiplier from E to F if the pointwise product fg belongs to F for each f ∈ E. We denote by PWM(E,F) the set of all pointwise multipliers from E to F. Let X be a space of homogeneous type in the sense of Coifman-Weiss. For 1 ≤ p < ∞ and for ϕ : X × + + , we denote by b m o ϕ , p ( X ) the set of all functions f L l o c p ( X ) such that s u p a X , r > 0 1 / ϕ ( a , r ) ( 1 / μ ( B ( a , r ) ) ʃ B ( a , r ) | f ( x ) - f B ( a , r ) | p d μ ) 1 / p < , where B(a,r) is the ball centered at a and of...

Preduals of Sobolev-Campanato spaces

Konrad Gröger, Lutz Recke (2001)

Mathematica Bohemica

We present definitions of Banach spaces predual to Campanato spaces and Sobolev-Campanato spaces, respectively, and we announce some results on embeddings and isomorphisms between these spaces. Detailed proofs will appear in our paper in Math. Nachr.

Problème de Stokes et système de Navier-Stokes incompressible à densité variable dans le demi-espace

Raphaël Danchin, Piotr Bogusław Mucha (2008/2009)

Séminaire Équations aux dérivées partielles

On s’intéresse à la résolution du système de Navier-Stokes incompressible à densité variable dans le demi-espace + n : = n - 1 × ] 0 , [ en dimension n 3 . On considère des données initiales à régularité critique. On établit que si la densité initiale est proche d’une constante strictement positive dans L W ˙ 1 , n et si la vitesse initiale est petite par rapport à la viscosité dans l’espace de Besov homogène B ˙ n , 1 0 alors le système de Navier-Stokes admet une unique solution globale. La démonstration repose sur de nouvelles estimations...

Properties of the Sobolev space H k s , s '

Henryk Kołakowski (1999)

Annales Polonici Mathematici

Let n ≥ 2 and H k s , s ' = u S ' ( n ) : u s , s ' < , where u ² s , s ' = ( 2 π ) - n ( 1 + | ξ | ² ) s ( 1 + | ξ ' | ² ) s ' | F u ( ξ ) | ² d ξ , F u ( ξ ) = e - i x ξ u ( x ) d x , ξ ' k , k < n. We prove that for some s,s’ the space H k s , s ' is a multiplicative algebra.

Currently displaying 741 – 760 of 1286