The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 921 –
940 of
1576
We prove existence and uniqueness of classical solutions for an incomplete second-order abstract Cauchy problem associated with operators which have polynomially bounded resolvent. Some examples of differential operators to which our abstract result applies are also included.
We present an existence theorem for integral equations of Urysohn-Volterra type involving fuzzy set valued mappings. A fixed point theorem due to Schauder is the main tool in our analysis.
We study the existence of principal eigenvalues for differential operators of second order which are not necessarily in divergence form. We obtain results concerning multiplicity of principal eigenvalues in both the variational and the general case. Our approach uses systematically the Krein-Rutman theorem and fixed point arguments for the inverse of the spectral radius of some associated problems. We also use a variational characterization for both the self-adjoint and the general case.
The existence of positive solutions for a nonlocal boundary-value problem with vector-valued response is investigated. We develop duality and variational principles for this problem. Our variational approach enables us to approximate solutions and give a measure of a duality gap between the primal and dual functional for minimizing sequences.
We study the existence of one-signed periodic solutions of the equations
where , is continuous and 1-periodic, is a continuous and 1-periodic in the first variable and may take values of different signs. The Krasnosielski fixed point theorem on cone is used.
We consider nonlinear systems with a priori feedback. We establish the existence of admissible pairs and then we show that the Lagrange optimal control problem admits an optimal pair. As application we work out in detail two examples of optimal control problems for nonlinear parabolic partial differential equations.
For a nonlinear hyperbolic equation defined in a thin domain we prove the existence of a periodic solution with respect to time both in the non-autonomous and autonomous cases. The methods employed are a combination of those developed by J. K. Hale and G. Raugel and the theory of the topological degree.
Currently displaying 921 –
940 of
1576