The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 201 –
220 of
700
Let T be a self-adjoint tridiagonal operator in a Hilbert space H with the orthonormal basis {e n}n=1∞, σ(T) be the spectrum of T and Λ(T) be the set of all the limit points of eigenvalues of the truncated operator T N. We give sufficient conditions such that the spectrum of T is discrete and σ(T) = Λ(T) and we connect this problem with an old problem in analysis.
Let x₀ be a nonzero vector in ℂⁿ. We show that a linear map Φ: Mₙ(ℂ) → Mₙ(ℂ) preserves the local spectral radius at x₀ if and only if there is α ∈ ℂ of modulus one and an invertible matrix A ∈ Mₙ(ℂ) such that Ax₀ = x₀ and for all T ∈ Mₙ(ℂ).
Let H be an infinite-dimensional separable complex Hilbert space and B(H) the algebra of all bounded linear operators on H. For an operator T in B(H), let σg(T) denote the generalized spectrum of T. In this paper, we prove that if φ: B(H) → B(H) is a surjective linear map, then φ preserves the generalized spectrum (i.e. σg(φ(T)) = σg(T) for every T ∈ B(H)) if and only if there is A ∈ B(H) invertible such that either φ(T) = ATA-1 for every T ∈ B(H), or φ(T) = ATtrA-1 for every T ∈ B(H). Also, we...
In the paper local entropy moduli of operators between Banach spaces are introduced. They constitue a generalization of entropy numbers and moduli, and localize these notions in an appropriate way. Many results regarding entropy numbers and moduli can be carried over to local entropy moduli. We investigate relations between local entropy moduli and s-numbers, spectral properties, eigenvalues, absolutely summing operators. As applications, local entropy moduli of identical and diagonal operators...
Let be the algebra of all bounded linear operators on a complex Hilbert space . We characterize locally spectrally bounded linear maps from onto itself. As a consequence, we describe linear maps from onto itself that compress the local spectrum.
Let ϕ be a surjective map on the space of n×n complex matrices such that r(ϕ(A)-ϕ(B))=r(A-B) for all A,B, where r(X) is the spectral radius of X. We show that ϕ must be a composition of five types of maps: translation, multiplication by a scalar of modulus one, complex conjugation, taking transpose and (simultaneous) similarity. In particular, ϕ is real linear up to a translation.
Currently displaying 201 –
220 of
700