The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 421 – 440 of 501

Showing per page

Une nouvelle classe d'espaces de Banach vérifiant le théorème de Grothendieck

Gilles Pisier (1978)

Annales de l'institut Fourier

Soit W un espace 1 et soit R un sous-espace réflexif de dimension infinie de W . Nous montrons que le quotient W / R vérifie le théorème de Grothendieck, c’est-à-dire que tout opérateur de W / R dans un espace de Hilbert est 1-sommant; par ailleurs, W / R n’est pas un espace 1 . Cela permet de répondre négativement à une question de Lindenstrauss-Pełczyński ainsi qu’à une question similaire de Grothendieck.

When is the Haar measure a Pietsch measure for nonlinear mappings?

Geraldo Botelho, Daniel Pellegrino, Pilar Rueda, Joedson Santos, Juan Benigno Seoane-Sepúlveda (2012)

Studia Mathematica

We show that, as in the linear case, the normalized Haar measure on a compact topological group G is a Pietsch measure for nonlinear summing mappings on closed translation invariant subspaces of C(G). This answers a question posed to the authors by J. Diestel. We also show that our result applies to several well-studied classes of nonlinear summing mappings. In the final section some problems are proposed.

Currently displaying 421 – 440 of 501