The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 81 –
100 of
168
The Cauchy dual operator T’, given by , provides a bounded unitary invariant for a closed left-invertible T. Hence, in some special cases, problems in the theory of unbounded Hilbert space operators can be related to similar problems in the theory of bounded Hilbert space operators. In particular, for a closed expansive T with finite-dimensional cokernel, it is shown that T admits the Cowen-Douglas decomposition if and only if T’ admits the Wold-type decomposition (see Definitions 1.1 and 1.2 below)....
We introduce and discuss a class of operators, to be referred to as operators close to isometries. The Bergman-type operators, 2-hyperexpansions, expansive p-isometries, and certain alternating hyperexpansions are main examples of such operators. We establish a few decomposition theorems for operators close to isometries. Applications are given to the theory of p-isometries and of hyperexpansive operators.
2000 Mathematics Subject Classification: Primary 47B47, 47B10; Secondary 47A30.Let H be a separable infinite dimensional complex Hilbert space and let L(H) denote the algebra of all bounded linear operators on H into itself. Given A ∈ L(H), the derivation δA : L(H)→ L(H) is defined by δA(X) = AX-XA. In this paper we prove that if A is an n-multicyclic hyponormal operator and T is hyponormal such that AT = TA, then || δA(X)+T|| ≥ ||T|| for all X ∈ L(H). We establish the same inequality if A is...
Let denote the algebra of all bounded linear operators on a complex infinite dimensional Hilbert space . For , the generalized derivation and the multiplication operator are defined on by and . In this paper, we give a characterization of bounded operators and such that the range of is closed. We present some sufficient conditions for to have closed range. Some related results are also given.
Let denote the algebra of operators on a complex infinite dimensional Hilbert space . For , the generalized derivation and the elementary operator are defined by and for all . In this paper, we exhibit pairs of operators such that the range-kernel orthogonality of holds for the usual operator norm. We generalize some recent results. We also establish some theorems on the orthogonality of the range and the kernel of with respect to the wider class of unitarily invariant norms on...
In this paper we study some properties of a totally -paranormal operator (defined below) on Hilbert space. In particular, we characterize a totally -paranormal operator. Also we show that Weyl’s theorem and the spectral mapping theorem hold for totally -paranormal operators through the local spectral theory. Finally, we show that every totally -paranormal operator satisfies an analogue of the single valued extension property for and some of totally -paranormal operators have scalar extensions....
The paper deals mostly with spectral properties of unbounded hyponormal operators. Some nontrivial examples of such operators are given.
We study some properties of w-hyponormal operators. In particular we show that some w-hyponormal operators are subscalar. Also we state some theorems on invariant subspaces of w-hyponormal operators.
Currently displaying 81 –
100 of
168