Displaying 601 – 620 of 681

Showing per page

Applications of time-delayed backward stochastic differential equations to pricing, hedging and portfolio management in insurance and finance

Łukasz Delong (2012)

Applicationes Mathematicae

We investigate novel applications of a new class of equations which we call time-delayed backward stochastic differential equations. Time-delayed BSDEs may arise in insurance and finance in an attempt to find an investment strategy and an investment portfolio which should replicate a liability or meet a target depending on the strategy applied or the past values of the portfolio. In this setting, a managed investment portfolio serves simultaneously as the underlying security on which the liability/target...

Approximate maximum principle for discrete approximations of optimal control systems with nonsmooth objectives and endpoint constraints

Boris S. Mordukhovich, Ilya Shvartsman (2013)

ESAIM: Control, Optimisation and Calculus of Variations

The paper studies discrete/finite-difference approximations of optimal control problems governed by continuous-time dynamical systems with endpoint constraints. Finite-difference systems, considered as parametric control problems with the decreasing step of discretization, occupy an intermediate position between continuous-time and discrete-time (with fixed steps) control processes and play a significant role in both qualitative and numerical aspects of optimal control. In this paper we derive an...

Approximate smoothings of locally Lipschitz functionals

Aleksander Ćwiszewski, Wojciech Kryszewski (2002)

Bollettino dell'Unione Matematica Italiana

The paper deals with approximation of locally Lipschitz functionals. A concept of approximation, based on the idea of graph approximation of the generalized gradient, is discussed and the existence of such approximations for locally Lipschitz functionals, defined on open domains in R N , is proved. Subsequently, the procedure of a smooth normal approximation of the class of regular sets (containing e.g. convex and/or epi-Lipschitz sets) is presented.

Approximation and numerical solution of contact problems with friction

Jaroslav Haslinger, Miroslav Tvrdý (1983)

Aplikace matematiky

The present paper deals with numerical solution of the contact problem with given friction. By a suitable choice of multipliers the whole problem is transformed to that of finding a saddle-point of the Lagrangian function on a certain convex set K × Λ . The approximation of this saddle-point is defined, the convergence is proved and the rate of convergence established. For the numerical realization Uzawa’s algorithm is used. Some examples are given in the conclusion.

Approximation by finitely supported measures

Benoît Kloeckner (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the problem of approximating a probability measure defined on a metric space by a measure supported on a finite number of points. More specifically we seek the asymptotic behavior of the minimal Wasserstein distance to an approximation when the number of points goes to infinity. The main result gives an equivalent when the space is a Riemannian manifold and the approximated measure is absolutely continuous and compactly supported.

Approximation by finitely supported measures

Benoît Kloeckner (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the problem of approximating a probability measure defined on a metric space by a measure supported on a finite number of points. More specifically we seek the asymptotic behavior of the minimal Wasserstein distance to an approximation when the number of points goes to infinity. The main result gives an equivalent when the space is a Riemannian manifold and the approximated measure is absolutely continuous and compactly supported.

Approximation by finitely supported measures

Benoît Kloeckner (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the problem of approximating a probability measure defined on a metric space by a measure supported on a finite number of points. More specifically we seek the asymptotic behavior of the minimal Wasserstein distance to an approximation when the number of points goes to infinity. The main result gives an equivalent when the space is a Riemannian manifold and the approximated measure is absolutely continuous and compactly supported.

Currently displaying 601 – 620 of 681