Displaying 61 – 80 of 4405

Showing per page

A deterministic affine-quadratic optimal control problem

Yuanchang Wang, Jiongmin Yong (2014)

ESAIM: Control, Optimisation and Calculus of Variations

A deterministic affine-quadratic optimal control problem is considered. Due to the nature of the problem, optimal controls exist under some very mild conditions. Further, it is shown that under some assumptions, the optimal control is unique which leads to the differentiability of the value function. Therefore, the value function satisfies the corresponding Hamilton–Jacobi–Bellman equation in the classical sense, and the optimal control admits a state feedback representation. Under some additional...

A deterministic LQ tracking problem: parametrisation of the controller

Ľuboš Čirka, Ján Mikleš, Miroslav Fikar (2002)

Kybernetika

The article discusses an optimal Linear Quadratic (LQ) deterministic control problem when the Youla–Kučera parametrisation of controller is used. We provide a computational procedure for computing a deterministic optimal single-input single-output (SISO) controller from any stabilising controller. This approach allows us to calculate a new optimal LQ deterministic controller from a previous one when the plant has changed. The design based on the Youla –Kučera parametrisation approach is compared...

A Differential Game Described by a Hyperbolic System

Souroujon, Diko (1999)

Serdica Mathematical Journal

An antagonistic differential game of hyperbolic type with a separable linear vector pay-off function is considered. The main result is the description of all ε-Slater saddle points consisting of program strategies, program ε-Slater maximins and minimaxes for each ε ∈ R^N > for this game. To this purpose, the considered differential game is reduced to find the optimal program strategies of two multicriterial problems of hyperbolic type. The application...

A duality-based approach to elliptic control problems in non-reflexive Banach spaces

Christian Clason, Karl Kunisch (2011)

ESAIM: Control, Optimisation and Calculus of Variations

Convex duality is a powerful framework for solving non-smooth optimal control problems. However, for problems set in non-reflexive Banach spaces such as L1(Ω) or BV(Ω), the dual problem is formulated in a space which has difficult measure theoretic structure. The predual problem, on the other hand, can be formulated in a Hilbert space and entails the minimization of a smooth functional with box constraints, for which efficient numerical methods exist. In this work, elliptic control problems with...

A duality-based approach to elliptic control problems in non-reflexive Banach spaces*

Christian Clason, Karl Kunisch (2011)

ESAIM: Control, Optimisation and Calculus of Variations

Convex duality is a powerful framework for solving non-smooth optimal control problems. However, for problems set in non-reflexive Banach spaces such as L1(Ω) or BV(Ω), the dual problem is formulated in a space which has difficult measure theoretic structure. The predual problem, on the other hand, can be formulated in a Hilbert space and entails the minimization of a smooth functional with box constraints, for which efficient numerical methods exist. In this work, elliptic control problems with...

A fast algorithm for the two dimensional HJB equation of stochastic control

J. Frédéric Bonnans, Élisabeth Ottenwaelter, Housnaa Zidani (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper analyses the implementation of the generalized finite differences method for the HJB equation of stochastic control, introduced by two of the authors in [Bonnans and Zidani, SIAM J. Numer. Anal. 41 (2003) 1008–1021]. The computation of coefficients needs to solve at each point of the grid (and for each control) a linear programming problem. We show here that, for two dimensional problems, this linear programming problem can be solved in O ( p m a x ) operations, where p m a x is the size of the stencil....

A fast algorithm for the two dimensional HJB equation of stochastic control

J. Frédéric Bonnans, Élisabeth Ottenwaelter, Housnaa Zidani (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper analyses the implementation of the generalized finite differences method for the HJB equation of stochastic control, introduced by two of the authors in [Bonnans and Zidani, SIAM J. Numer. Anal.41 (2003) 1008–1021]. The computation of coefficients needs to solve at each point of the grid (and for each control) a linear programming problem. We show here that, for two dimensional problems, this linear programming problem can be solved in O(pmax) operations, where pmax is the size of...

A finite dimensional linear programming approximation of Mather's variational problem

Luca Granieri (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We provide an approximation of Mather variational problem by finite dimensional minimization problems in the framework of Γ-convergence. By a linear programming interpretation as done in [Evans and Gomes, ESAIM: COCV 8 (2002) 693–702] we state a duality theorem for the Mather problem, as well a finite dimensional approximation for the dual problem.

A finite element analysis for elastoplastic bodies obeying Hencky's law

Ivan Hlaváček (1981)

Aplikace matematiky

Using the Haar-Kármán principle, approximate solutions of the basic boundary value problems are proposed and studied, which consist of piecewise linear stress fields on composite triangles. The torsion problem is solved in an analogous manner. Some convergence results are proven.

Currently displaying 61 – 80 of 4405