The search session has expired. Please query the service again.

Displaying 941 – 960 of 4417

Showing per page

Convergence and regularization results for optimal control problems with sparsity functional

Gerd Wachsmuth, Daniel Wachsmuth (2011)

ESAIM: Control, Optimisation and Calculus of Variations

Optimization problems with convex but non-smooth cost functional subject to an elliptic partial differential equation are considered. The non-smoothness arises from a L1-norm in the objective functional. The problem is regularized to permit the use of the semi-smooth Newton method. Error estimates with respect to the regularization parameter are provided. Moreover, finite element approximations are studied. A-priori as well as a-posteriori error estimates are developed and confirmed by numerical...

Convergence and regularization results for optimal control problems with sparsity functional

Gerd Wachsmuth, Daniel Wachsmuth (2011)

ESAIM: Control, Optimisation and Calculus of Variations

Optimization problems with convex but non-smooth cost functional subject to an elliptic partial differential equation are considered. The non-smoothness arises from a L1-norm in the objective functional. The problem is regularized to permit the use of the semi-smooth Newton method. Error estimates with respect to the regularization parameter are provided. Moreover, finite element approximations are studied. A-priori as well as a-posteriori error estimates are developed and confirmed by numerical...

Convergence conditions for Secant-type methods

Ioannis K. Argyros, Said Hilout (2010)

Czechoslovak Mathematical Journal

We provide new sufficient convergence conditions for the convergence of the secant-type methods to a locally unique solution of a nonlinear equation in a Banach space. Our new idea uses recurrent functions, and Lipschitz-type and center-Lipschitz-type instead of just Lipschitz-type conditions on the divided difference of the operator involved. It turns out that this way our error bounds are more precise than earlier ones and under our convergence hypotheses we can cover cases where earlier conditions...

Convergence of a high-order compact finite difference scheme for a nonlinear Black–Scholes equation

Bertram Düring, Michel Fournié, Ansgar Jüngel (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

A high-order compact finite difference scheme for a fully nonlinear parabolic differential equation is analyzed. The equation arises in the modeling of option prices in financial markets with transaction costs. It is shown that the finite difference solution converges locally uniformly to the unique viscosity solution of the continuous equation. The proof is based on a careful study of the discretization matrices and on an abstract convergence result due to Barles and Souganides.

Convergence of a high-order compact finite difference scheme for a nonlinear Black–Scholes equation

Bertram Düring, Michel Fournié, Ansgar Jüngel (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

A high-order compact finite difference scheme for a fully nonlinear parabolic differential equation is analyzed. The equation arises in the modeling of option prices in financial markets with transaction costs. It is shown that the finite difference solution converges locally uniformly to the unique viscosity solution of the continuous equation. The proof is based on a careful study of the discretization matrices and on an abstract convergence result due to Barles and Souganides.

Convergence of a non-local eikonal equation to anisotropic mean curvature motion. Application to dislocations dynamics

Francesca Da Lio, N. Forcadel, Régis Monneau (2008)

Journal of the European Mathematical Society

We prove the convergence at a large scale of a non-local first order equation to an anisotropic mean curvature motion. The equation is an eikonal-type equation with a velocity depending in a non-local way on the solution itself, which arises in the theory of dislocation dynamics. We show that if an anisotropic mean curvature motion is approximated by equations of this type then it is always of variational type, whereas the converse is true only in dimension two.

Convergence of a variational lagrangian scheme for a nonlinear drift diffusion equation

Daniel Matthes, Horst Osberger (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We study a Lagrangian numerical scheme for solution of a nonlinear drift diffusion equation on an interval. The discretization is based on the equation’s gradient flow structure with respect to the Wasserstein distance. The scheme inherits various properties from the continuous flow, like entropy monotonicity, mass preservation, metric contraction and minimum/ maximum principles. As the main result, we give a proof of convergence in the limit of vanishing mesh size under a CFL-type condition. We...

Convergence of an equilibrium finite element model for plane elastostatics

Ivan Hlaváček (1979)

Aplikace matematiky

An equilibrium triangular block-element, proposed by Watwood and Hartz, is subjected to an analysis and its approximability property is proved. If the solution is regular enough, a quasi-optimal error estimate follows for the dual approximation to the mixed boundary value problem of elasticity (based on Castigliano's principle). The convergence is proved even in a general case, when the solution is not regular.

Convergence of Cell Based Finite Volume Discretizations for Problems of Control in the Conduction Coefficients

Anton Evgrafov, Misha Marie Gregersen, Mads Peter Sørensen (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We present a convergence analysis of a cell-based finite volume (FV) discretization scheme applied to a problem of control in the coefficients of a generalized Laplace equation modelling, for example, a steady state heat conduction. Such problems arise in applications dealing with geometric optimal design, in particular shape and topology optimization, and are most often solved numerically utilizing a finite element approach. Within the FV framework for control in the coefficients problems ...

Convergence of Cell Based Finite Volume Discretizations for Problems of Control in the Conduction Coefficients

Anton Evgrafov, Misha Marie Gregersen, Mads Peter Sørensen (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We present a convergence analysis of a cell-based finite volume (FV) discretization scheme applied to a problem of control in the coefficients of a generalized Laplace equation modelling, for example, a steady state heat conduction. Such problems arise in applications dealing with geometric optimal design, in particular shape and topology optimization, and are most often solved numerically utilizing a finite element approach. Within the FV framework for control in the coefficients problems ...

Convergence of discontinuous Galerkin approximations of an optimal control problem associated to semilinear parabolic PDE's

Konstantinos Chrysafinos (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

A discontinuous Galerkin finite element method for an optimal control problem related to semilinear parabolic PDE's is examined. The schemes under consideration are discontinuous in time but conforming in space. Convergence of discrete schemes of arbitrary order is proven. In addition, the convergence of discontinuous Galerkin approximations of the associated optimality system to the solutions of the continuous optimality system is shown. The proof is based on stability estimates at arbitrary time...

Currently displaying 941 – 960 of 4417