Topological derivative for linear elastic plate bending problems
The form of topological derivatives for an integral shape functional is derived for a class of semilinear elliptic equations. The convergence of finite element approximation for the topological derivatives is shown and the error estimates in the L∞ norm are obtained. The results of numerical experiments which confirm the theoretical convergence rate are presented.
The topological sensitivity analysis consists in studying the behavior of a given shape functional when the topology of the domain is perturbed, typically by the nucleation of a small hole. This notion forms the basic ingredient of different topology optimization/reconstruction algorithms. From the theoretical viewpoint, the expression of the topological sensitivity is well-established in many situations where the governing p.d.e. system is of elliptic type. This paper focuses on the derivation...
The topological sensitivity analysis consists in studying the behavior of a given shape functional when the topology of the domain is perturbed, typically by the nucleation of a small hole. This notion forms the basic ingredient of different topology optimization/reconstruction algorithms. From the theoretical viewpoint, the expression of the topological sensitivity is well-established in many situations where the governing p.d.e. system is of elliptic type. This paper focuses on the derivation...
This paper deals with the formulation of a necessary optimality condition for a topology optimization problem for an elastic contact problem with Tresca friction. In the paper a quasistatic contact model is considered, rather than a stationary one used in the literature. The functional approximating the normal contact stress is chosen as the shape functional. The aim of the topology optimization problem considered is to find the optimal material distribution inside a design domain occupied by the...
This work deals with a non linear inverse problem of reconstructing an unknown boundary γ, the boundary conditions prescribed on γ being of Signorini type, by using boundary measurements. The problem is turned into an optimal shape design one, by constructing a Kohn & Vogelius-like cost function, the only minimum of which is proved to be the unknown boundary. Furthermore, we prove that the derivative of this cost function with respect to a direction θ depends only on the state u0, and not...
Dans cet article nous prouvons un nouveau résultat d'existence pour une classe de problèmes d'optimisation de forme assez générale. Les ouverts que nous considérons possèdent une contrainte de nature géométrique sur la normale intérieure. Ce travail est motivé par la formulation variationnelle d'un problème à frontière libre dont la solution possède cette propriété géométrique.
In this paper we consider non-compact cylinder-like surfaces called unduloids and study some aspects of their geometry. In particular, making use of a Kenmotsu-type representation of these surfaces, we derive explicit formulas for the lengths and areas of arbitrary segments, along with a formula for the volumes enclosed by them.
A general framework for calculating shape derivatives for optimization problems with partial differential equations as constraints is presented. The proposed technique allows to obtain the shape derivative of the cost without the necessity to involve the shape derivative of the state variable. In fact, the state variable is only required to be Lipschitz continuous with respect to the geometry perturbations. Applications to inverse interface problems, and shape optimization for elliptic systems...
Shape optimization of a two-dimensional elastic body is considered, provided the material is weakly supporting tension. The problem generalizes that of a masonry dam subjected to its own weight and to the hydrostatic presure. Existence of an optimal shape is proved. Using a penalty method and finite element technique, approximate solutions are proposed and their convergence is analyzed.