Displaying 161 – 180 of 218

Showing per page

Shape optimization of elasto-plastic bodies

Zuzana Dimitrovová (2001)

Applications of Mathematics

Existence of an optimal shape of a deformable body made from a physically nonlinear material obeying a specific nonlinear generalized Hooke’s law (in fact, the so called deformation theory of plasticity is invoked in this case) is proved. Approximation of the problem by finite elements is also discussed.

Shape optimization of materially non-linear bodies in contact

Jaroslav Haslinger, Raino Mäkinen (1997)

Applications of Mathematics

Optimal shape design problem for a deformable body in contact with a rigid foundation is studied. The body is made from material obeying a nonlinear Hooke’s law. We study the existence of an optimal shape as well as its approximation with the finite element method. Practical realization with nonlinear programming is discussed. A numerical example is included.

Shape optimization of piezoelectric sensors or actuators for the control of plates

Emmanuel Degryse, Stéphane Mottelet (2005)

ESAIM: Control, Optimisation and Calculus of Variations

This paper deals with a new method to control flexible structures by designing non-collocated sensors and actuators satisfying a pseudo-collocation criterion in the low-frequency domain. This technique is applied to a simply supported plate with a point force actuator and a piezoelectric sensor, for which we give some theoretical and numerical results. We also compute low-order controllers which stabilize pseudo-collocated systems and the closed-loop behavior show that this approach is very promising....

Shape optimization of piezoelectric sensors or actuators for the control of plates

Emmanuel Degryse, Stéphane Mottelet (2010)

ESAIM: Control, Optimisation and Calculus of Variations

This paper deals with a new method to control flexible structures by designing non-collocated sensors and actuators satisfying a pseudo-collocation criterion in the low-frequency domain. This technique is applied to a simply supported plate with a point force actuator and a piezoelectric sensor, for which we give some theoretical and numerical results. We also compute low-order controllers which stabilize pseudo-collocated systems and the closed-loop behavior show that this approach is very promising. ...

Shape optimization problems for metric graphs

Giuseppe Buttazzo, Berardo Ruffini, Bozhidar Velichkov (2014)

ESAIM: Control, Optimisation and Calculus of Variations

Γ):Γ ∈ 𝒜, ℋ1(Γ) = l}, where ℋ1D1,...,Dk }  ⊂ Rd . The cost functional ℰ(Γ) is the Dirichlet energy of Γ defined through the Sobolev functions on Γ vanishing on the points Di. We analyze the existence of a solution in both the families of connected sets and of metric graphs. At the end, several explicit examples are discussed.

Shape Sensitivity Analysis of the Dirichlet Laplacian in a Half-Space

Cherif Amrouche, Šárka Nečasová, Jan Sokołowski (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

Material and shape derivatives for solutions to the Dirichlet Laplacian in a half-space are derived by an application of the speed method. The proposed method is general and can be used for shape sensitivity analysis in unbounded domains for the Neumann Laplacian as well as for the elasticity boundary value problems.

Simmetrizzazione e disuguaglianze di tipo Pòlya-Szegö

Nicola Fusco (2005)

Bollettino dell'Unione Matematica Italiana

Si presentano alcuni risultati recenti riguardanti la disuguaglianza di Pòlya- Szegö e la caratterizzazione dei casi in cui essa si riduce ad un'uguaglianza. Particolare attenzione viene rivolta alla simmetrizzazione di Steiner di insiemi di perimetro finito e di funzioni di Sobolev.

Simultaneous unitarizability of SL n -valued maps, and constant mean curvature k-noid monodromy

Wayne Rossman, Nicholas Schmitt (2006)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We give necessary and sufficient local conditions for the simultaneous unitarizability of a set of analytic matrix maps from an analytic 1-manifold into SL n under conjugation by a single analytic matrix map.We apply this result to the monodromy arising from an integrable partial differential equation to construct a family of k -noids, genus-zero constant mean curvature surfaces with three or more ends in euclidean, spherical and hyperbolic 3 -spaces.

Some inverse and control problems for fluids

Enrique Fernández-Cara, Thierry Horsin, Henry Kasumba (2013)

Annales mathématiques Blaise Pascal

This paper deals with some inverse and control problems for the Navier-Stokes and related systems. We will focus on some particular aspects that have recently led to interesting (theoretical and numerical) results: geometric inverse problems, Eulerian and Lagrangian controllability and vortex reduction oriented to shape optimization.

Some new problems in spectral optimization

Giuseppe Buttazzo, Bozhidar Velichkov (2014)

Banach Center Publications

We present some new problems in spectral optimization. The first one consists in determining the best domain for the Dirichlet energy (or for the first eigenvalue) of the metric Laplacian, and we consider in particular Riemannian or Finsler manifolds, Carnot-Carathéodory spaces, Gaussian spaces. The second one deals with the optimal shape of a graph when the minimization cost is of spectral type. The third one is the optimization problem for a Schrödinger potential in suitable classes.

Currently displaying 161 – 180 of 218