The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Using methods from coarse topology we show that fundamental classes of closed enlargeable manifolds map non-trivially both to the rational homology of their fundamental groups and to the -theory of the corresponding reduced -algebras. Our proofs do not depend on the Baum–Connes conjecture and provide independent confirmation for specific predictions derived from this conjecture.
On utilise l'équivalence due à M. Gromov entre l'hyperbolicité d'un espace métrique
géodésique et le fait que ses cônes asymptotiques sont des arbres réels. Ce résultat
permet tout d'abord de donner une nouvelle preuve du fait que l'inégalité isopérimétrique
sous-quadratique implique l'hyperbolicité. Les avantages de cette preuve sont qu'elle est
très courte et qu'elle utilise une seule propriété de la fonction aire de remplissage des
courbes fermées, l'inégalité du quadrilatère....
In this paper, we present a new approach to the construction of Einstein metrics by a generalization of Thurston's Dehn filling. In particular in dimension 3, we will obtain an analytic proof of Thurston's result.
We study the spectral convergence of compact Riemannian manifolds in relation with the
Gromov-Hausdorff distance and discuss the geodesic distances and the energy forms of the
limit spaces.
Every bounded convex open set Ω of Rm is endowed with its Hilbert metric dΩ. We give a necessary and sufficient condition, called quasisymmetric convexity, for this metric space to be hyperbolic. As a corollary, when the boundary is real analytic, Ω is always hyperbolic. In dimension 2, this condition is: in affine coordinates, the boundary ∂Ω is locally the graph of a C1 strictly convex function whose derivative is quasisymmetric.
Currently displaying 1 –
11 of
11