Cardinal functions on products
We compare several conditions sufficient for maximal resolvability of topological spaces. We prove that a space is maximally resolvable provided that for a dense set and for each the -character of at is not greater than the dispersion character of . On the other hand, we show that this implication is not reversible even in the class of card-homogeneous spaces.
We prove that every compact space is a Čech-Stone compactification of a normal subspace of cardinality at most , and some facts about cardinal invariants of compact spaces.
We show that a regular totally ω-narrow paratopological group G has countable index of regularity, i.e., for every neighborhood U of the identity e of G, we can find a neighborhood V of e and a countable family of neighborhoods of e in G such that ∩W∈γ VW−1⊆ U. We prove that every regular (Hausdorff) totally !-narrow paratopological group is completely regular (functionally Hausdorff). We show that the index of regularity of a regular paratopological group is less than or equal to the weak Lindelöf...
We examine when a space has a zero set universal parametrised by a metrisable space of minimal weight and show that this depends on the -weight of when is perfectly normal. We also show that if parametrises a zero set universal for then for all . We construct zero set universals that have nice properties (such as separability or ccc) in the case where the space has a -coarser topology. Examples are given including an space with zero set universal parametrised by an space (and...
We show that if we add any number of Cohen reals to the ground model then, in the generic extension, a locally compact scattered space has at most levels of size ω. We also give a complete ZFC characterization of the cardinal sequences of regular scattered spaces. Although the classes of regular and of 0-dimensional scattered spaces are different, we prove that they have the same cardinal sequences.
Let (α) denote the class of all cardinal sequences of length α associated with compact scattered spaces (or equivalently, superatomic Boolean algebras). Also put . We show that f ∈ (α) iff for some natural number n there are infinite cardinals and ordinals such that and where each . Under GCH we prove that if α < ω₂ then (i) ; (ii) if λ > cf(λ) = ω, ; (iii) if cf(λ) = ω₁, ; (iv) if cf(λ) > ω₁, . This yields a complete characterization of the classes (α) for all α < ω₂,...
A topological space has a rank 2-diagonal if there exists a diagonal sequence on of rank , that is, there is a countable family of open covers of such that for each , . We say that a space satisfies the Discrete Countable Chain Condition (DCCC for short) if every discrete family of nonempty open subsets of is countable. We mainly prove that if is a DCCC normal space with a rank 2-diagonal, then the cardinality of is at most . Moreover, we prove that if is a first countable...
In this article, we extend Caristi's fixed point theorem, Ekeland's variational principle and Takahashi's maximization theorem to fuzzy metric spaces in the sense of George and Veeramani [A. George , P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems. 64 (1994) 395-399]. Further, a direct simple proof of the equivalences among these theorems is provided.
An existing description of the cartesian closed topological hull of , the category of extended pseudo-metric spaces and nonexpansive maps, is simplified, and as a result, this hull is shown to be a special instance of a “family” of cartesian closed topological subconstructs of , the category of extended pseudo-quasi-semi-metric spaces (also known as quasi-distance spaces) and nonexpansive maps. Furthermore, another special instance of this family yields the cartesian closed topological hull of...