Closed subsets of star -compact spaces
Fréchet, strongly Fréchet, productively Fréchet, weakly bisequential and bisequential filters (i.e., neighborhood filters in spaces of the same name) are characterized in a unified manner in terms of their images in the Stone space of ultrafilters. These characterizations involve closure structures on the set of ultrafilters. The case of productively Fréchet filters answers a question of S. Dolecki and turns out to be the only one involving a non topological closure structure.
It is shown that if admits a closure-preserving cover by closed -compact sets then is finite. If is compact and has a closure-preserving cover by separable subspaces then is metrizable. We also prove that if has a closure-preserving cover by compact sets, then is discrete.
We present a new continuous selection theorem, which unifies in some sense two well known selection theorems; namely we prove that if F is an H-upper semicontinuous multivalued map on a separable metric space X, G is a lower semicontinuous multivalued map on X, both F and G take nonconvex -decomposable closed values, the measure space T with a σ-finite measure μ is nonatomic, 1 ≤ p < ∞, is the Bochner-Lebesgue space of functions defined on T with values in a Banach space E, F(x) ∩ G(x) ≠ ∅...
Let be a metric space with a doubling measure, be a boundedly compact metric space and be a Lebesgue precise mapping whose upper gradient belongs to the Lorentz space , . Let be a set of measure zero. Then for -a.e. , where is the -dimensional Hausdorff measure and is the -codimensional Hausdorff measure. This property is closely related to the coarea formula and implies a version of the Eilenberg inequality. The result relies on estimates of Hausdorff content of level sets...
Gromov and Dranishnikov introduced asymptotic and coarse dimensions of proper metric spaces via quite different ways. We define coarse and asymptotic dimension of all metric spaces in a unified manner and we investigate relationships between them generalizing results of Dranishnikov and Dranishnikov-Keesling-Uspienskij.
This paper discusses properties of the Higson corona by means of a quotient on coarse ultrafilters on a proper metric space. We use this description to show that the corona functor is faithful and reflects isomorphisms.
The main results of the paper are: Proposition 0.1. A group G acting coarsely on a coarse space (X,𝓒) induces a coarse equivalence g ↦ g·x₀ from G to X for any x₀ ∈ X. Theorem 0.2. Two coarse structures 𝓒₁ and 𝓒₂ on the same set X are equivalent if the following conditions are satisfied: (1) Bounded sets in 𝓒₁ are identical with bounded sets in 𝓒₂. (2) There is a coarse action ϕ₁ of a group G₁ on (X,𝓒₁) and a coarse action ϕ₂ of a...
A net in a Hausdorff uniform space is called cofinally Cauchy if for each entourage, there exists a cofinal (rather than residual) set of indices whose corresponding terms are pairwise within the entourage. In a metric space equipped with the associated metric uniformity, if each cofinally Cauchy sequence has a cluster point, then so does each cofinally Cauchy net, and the space is called cofinally complete. Here we give necessary and sufficient conditions for the nonempty closed subsets of the...
In the existing literature there are several constructions of the strong shape category of topological spaces. In the one due to Yu. T. Lisitsa and S. Mardešić [LM1-3] an essential role is played by coherent polyhedral (ANR) expansions of spaces. Such expansions always exist, because every space admits a polyhedral resolution, resolutions are strong expansions and strong expansions are always coherent. The purpose of this paper is to prove that conversely, every coherent polyhedral (ANR) expansion...