Displaying 1521 – 1540 of 8496

Showing per page

Closure spaces and characterizations of filters in terms of their Stone images

Anh Tran Mynard, Frédéric Mynard (2007)

Czechoslovak Mathematical Journal

Fréchet, strongly Fréchet, productively Fréchet, weakly bisequential and bisequential filters (i.e., neighborhood filters in spaces of the same name) are characterized in a unified manner in terms of their images in the Stone space of ultrafilters. These characterizations involve closure structures on the set of ultrafilters. The case of productively Fréchet filters answers a question of S. Dolecki and turns out to be the only one involving a non topological closure structure.

Closure-preserving covers in function spaces

David Guerrero Sánchez (2010)

Commentationes Mathematicae Universitatis Carolinae

It is shown that if C p ( X ) admits a closure-preserving cover by closed σ -compact sets then X is finite. If X is compact and C p ( X ) has a closure-preserving cover by separable subspaces then X is metrizable. We also prove that if C p ( X , [ 0 , 1 ] ) has a closure-preserving cover by compact sets, then X is discrete.

CM-Selectors for pairs of oppositely semicontinuous multivalued maps with p -decomposable values

Hôǹg Thái Nguyêñ, Maciej Juniewicz, Jolanta Ziemińska (2001)

Studia Mathematica

We present a new continuous selection theorem, which unifies in some sense two well known selection theorems; namely we prove that if F is an H-upper semicontinuous multivalued map on a separable metric space X, G is a lower semicontinuous multivalued map on X, both F and G take nonconvex L p ( T , E ) -decomposable closed values, the measure space T with a σ-finite measure μ is nonatomic, 1 ≤ p < ∞, L p ( T , E ) is the Bochner-Lebesgue space of functions defined on T with values in a Banach space E, F(x) ∩ G(x) ≠ ∅...

Coarea integration in metric spaces

Malý, Jan (2003)

Nonlinear Analysis, Function Spaces and Applications

Let X be a metric space with a doubling measure, Y be a boundedly compact metric space and u : X Y be a Lebesgue precise mapping whose upper gradient g belongs to the Lorentz space L m , 1 , m 1 . Let E X be a set of measure zero. Then ^ m ( E u - 1 ( y ) ) = 0 for m -a.e. y Y , where m is the m -dimensional Hausdorff measure and ^ m is the m -codimensional Hausdorff measure. This property is closely related to the coarea formula and implies a version of the Eilenberg inequality. The result relies on estimates of Hausdorff content of level sets...

Coarse dimensions and partitions of unity.

N. Brodskiy, J. Dydak (2008)

RACSAM

Gromov and Dranishnikov introduced asymptotic and coarse dimensions of proper metric spaces via quite different ways. We define coarse and asymptotic dimension of all metric spaces in a unified manner and we investigate relationships between them generalizing results of Dranishnikov and Dranishnikov-Keesling-Uspienskij.

Coarse homotopy on metric spaces and their corona

Elisa Hartmann (2021)

Commentationes Mathematicae Universitatis Carolinae

This paper discusses properties of the Higson corona by means of a quotient on coarse ultrafilters on a proper metric space. We use this description to show that the corona functor is faithful and reflects isomorphisms.

Coarse structures and group actions

N. Brodskiy, J. Dydak, A. Mitra (2008)

Colloquium Mathematicae

The main results of the paper are: Proposition 0.1. A group G acting coarsely on a coarse space (X,𝓒) induces a coarse equivalence g ↦ g·x₀ from G to X for any x₀ ∈ X. Theorem 0.2. Two coarse structures 𝓒₁ and 𝓒₂ on the same set X are equivalent if the following conditions are satisfied: (1) Bounded sets in 𝓒₁ are identical with bounded sets in 𝓒₂. (2) There is a coarse action ϕ₁ of a group G₁ on (X,𝓒₁) and a coarse action ϕ₂ of a...

Cofinal completeness of the Hausdorff metric topology

Gerald Beer, Giuseppe Di Maio (2010)

Fundamenta Mathematicae

A net in a Hausdorff uniform space is called cofinally Cauchy if for each entourage, there exists a cofinal (rather than residual) set of indices whose corresponding terms are pairwise within the entourage. In a metric space equipped with the associated metric uniformity, if each cofinally Cauchy sequence has a cluster point, then so does each cofinally Cauchy net, and the space is called cofinally complete. Here we give necessary and sufficient conditions for the nonempty closed subsets of the...

Coherent and strong expansions of spaces coincide

Sibe Mardešić (1998)

Fundamenta Mathematicae

In the existing literature there are several constructions of the strong shape category of topological spaces. In the one due to Yu. T. Lisitsa and S. Mardešić [LM1-3] an essential role is played by coherent polyhedral (ANR) expansions of spaces. Such expansions always exist, because every space admits a polyhedral resolution, resolutions are strong expansions and strong expansions are always coherent. The purpose of this paper is to prove that conversely, every coherent polyhedral (ANR) expansion...

Currently displaying 1521 – 1540 of 8496