The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 121 –
140 of
347
Necessary conditions and sufficient conditions are given for to be a (σ-) m₁- or m₃-space. (A space is an m₁-space if each of its points has a closure-preserving local base.) A compact uncountable space K is given with an m₁-space, which answers questions raised by Dow, Ramírez Martínez and Tkachuk (2010) and Tkachuk (2011).
We prove several stability properties for the class of compact Hausdorff spaces such that with the weak or the pointwise topology is in the class of Stegall. In particular, this class is closed under arbitrary products.
We give a partial classification of spaces of continuous real valued functions on ordinals with the topology of pointwise convergence with respect to homeomorphisms and uniform homeomorphisms.
We apply the general theory of -Corson Compact spaces to remove an unnecessary hypothesis of zero-dimensionality from a theorem on polyadic spaces of tightness . In particular, we prove that polyadic spaces of countable tightness are Uniform Eberlein compact spaces.
Following the paper [BDC1], further relations between the classical topologies on function spaces and new ones induced by hyperspace topologies on graphs of functions are introduced and further characterizations of boundedly spaces are given.
We define and investigateCD Σ,Γ(K, E)-type spaces, which generalizeCD 0-type Banach lattices introduced in [1]. We state that the space CD Σ,Γ(K, E) can be represented as the space of E-valued continuous functions on the generalized Alexandroff Duplicate of K. As a corollary we obtain the main result of [6, 8].
Classical analytic spaces can be characterized as projections of Polish spaces. We prove analogous results for three classes of generalized analytic spaces that were introduced by Z. Frolík, D. Fremlin and R. Hansell. We use the technique of complete sequences of covers. We explain also some relations of analyticity to certain fragmentability properties of topological spaces endowed with an additional metric.
Given an ordered metric space (in particular, a Banach lattice) E, the generalized Helly space H(E) is the set of all increasing functions from the interval [0,1] to E considered with the topology of pointwise convergence, and E is said to have property (λ) if each of these functions has only countably many points of discontinuity. The main objective of the paper is to study those ordered metric spaces C(K,E), where K is a compact space, that have property (λ). In doing so, the guiding idea comes...
The local coincidence of the Hausdorff topology and the uniform convergence topology on the hyperspace consisting of closed graphs of multivalued (or continuous) functions is related to the existence of continuous functions which fail to be uniformly continuous. The problem of the local coincidence of these topologies on is investigated for some classes of spaces: topological groups, zero-dimensional spaces, metric manifolds.
A classical theorem of Hurewicz characterizes spaces with the Hurewicz covering property as those having bounded continuous images in the Baire space. We give a similar characterization for spaces which have the Hurewicz property hereditarily. We proceed to consider the class of Arhangel’skii spaces, for which every sheaf at a point can be amalgamated in a natural way. Let denote the space of continuous real-valued functions on with the topology of pointwise convergence. Our main result...
We investigate how the Lindelöf property of the function space is influenced by slight changes in and/or .
It is shown that if is a first-countable countably compact subspace of ordinals then is Lindelöf. This result is used to construct an example of a countably compact space such that the extent of is less than the Lindelöf number of . This example answers negatively Reznichenko’s question whether Baturov’s theorem holds for countably compact spaces.
Currently displaying 121 –
140 of
347