Codimension 2 fibrators that are closed under finite product.
Let be a transversely orientable transversely real-analytic codimension one minimal foliation of a paracompact manifold . We show that if the fundamental group of each leaf of is isomorphic to , then is without holonomy. We also show that if and the fundamental group of each leaf of is isomorphic to (), then is without holonomy.
We provide a simple characterization of codimension two submanifolds of that are of algebraic type, and use this criterion to provide examples of transcendental submanifolds when . If the codimension two submanifold is a nonsingular algebraic subset of whose Zariski closure in is a nonsingular complex algebraic set, then it must be an algebraic complete intersection in .
Nous démontrons des théorèmes de dualité de Poincaré et de de Rham pour la cohomologie basique et l’homologie des courants transverses invariants d’un feuilletage riemannien.