The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 13 of 13

Showing per page

High-dimensional knots corresponding to the fractional Fibonacci groups

Andrzej Szczepański, Andreĭ Vesnin (1999)

Fundamenta Mathematicae

We prove that the natural HNN-extensions of the fractional Fibonacci groups are the fundamental groups of high-dimensional knot complements. We also give some characterization and interpretation of these knots. In particular we show that some of them are 2-knots.

Homomorphic extensions of Johnson homomorphisms via Fox calculus

Bernard Perron (2004)

Annales de l’institut Fourier

Using Fox differential calculus, for any positive integer k , we construct a map on the mapping class group g , 1 of a surface of genus g with one boundary component, such that, when restricted to an appropriate subgroup, it coincides with the k + 1 t h Johnson-Morita homomorphism. This allows us to construct very easily a homomorphic extension to g , 1 of the second and third Johnson-Morita homomorphisms.

Currently displaying 1 – 13 of 13

Page 1