The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 241 – 260 of 346

Showing per page

Résidus des connexions à singularités et classes caractéristiques

Daniel Lehmann (1981)

Annales de l'institut Fourier

Un “théorème des résidus” est donné, qui exprime les classes caractéristiques réelles de dimension 2 k d’un fibré principal C à l’aide d’une connexion définie seulement au-dessus d’un voisinage du ( 2 k - 1 ) -squelette d’une triangulation de la base. Ce théorème coiffe simultanément la théorie de Chern-Weil, la théorie de l’obstruction modulo torsion, ainsi que des formules du type Riemann-Hurwitz pour les revêtements ramifiés.

Résidus des sous-variétés invariantes d'un feuilletage singulier

Daniel Lehmann (1991)

Annales de l'institut Fourier

Une formule de résidus est demontrée pour les classes caractéristiques de degré suffisamment grand du fibré normal à une sous variété lisse V d’une variété W , invariante relativement à un feuilletage avec singularités dans W . En particulier, dans le cas analytique complexe, et pour les feuilletages dont les feuilles sont de dimension complexe 1, les nombres de Chern du fibre normal à la sous-variété V sont calculés en termes de résidus de Grothendieck, par une formule qui généralise au cas de dimensions...

Currently displaying 241 – 260 of 346