The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 41 –
60 of
126
Nous nous intéressons aux propriétés transverses des feuilletages orientés des surfaces. En particulier, nous donnons des conditions équivalentes à l’existence d’une section globale, en étudiant les formes fermées transverses à l’aide de réseaux ferroviaires.
We prove that for each integer there is an open neighborhood of
the identity map of the 2-sphere , in topology such that: if is a
nilpotent subgroup of with length of nilpotency, generated by
elements in , then the natural -action on has nonempty fixed point
set. Moreover, the -action has at least two fixed points if the action has a finite
nontrivial orbit.
The notion of a -diffeomorphism related to a foliation is introduced. A perfectness theorem for the group of -diffeomorphisms is proved. A remark on -diffeomorphisms is given.
Let be a compact connected oriented surface with one boundary component, and let be the fundamental group of . The Johnson filtration is a decreasing sequence of subgroups of the Torelli group of , whose -th term consists of the self-homeomorphisms of that act trivially at the level of the -th nilpotent quotient of . Morita defined a homomorphism from the -th term of the Johnson filtration to the third homology group of the -th nilpotent quotient of .
In this paper, we replace groups...
Le but de cet article est de donner une autre démonstration plus simple du théorème d’Ivanov (Théorème 1) qui assure que le groupe de toutes les difféotopies d’une surface orientable et fermée de genre est complet. En étudiant l’action d’un automorphisme quelconque du groupe sur les difféotopies d’ordre fini, on montre que les involutions hyperelliptiques sont globalement préservées. Le théorème d’Ivanov est alors une conséquence d’un résultat de Dyer et Grossmann qui affirm que le groupe...
Given any compact manifold , we construct a non-empty open subset of the space of -diffeomorphisms and a dense subset such that the centralizer of every diffeomorphism in is uncountable, hence non-trivial.
Currently displaying 41 –
60 of
126