A Narasimhan-Seshardri-Donaldson Correspondance over Non-orientable Surfaces.
With a chaotic system being divided into linear and nonlinear parts, a new approach is presented to realize generalized chaos synchronization by using feedback control and parameter commutation. Based on a linear transformation, the problem of generalized synchronization (GS) is transformed into the stability problem of the synchronous error system, and an existence condition for GS is derived. Furthermore, the performance of GS can be improved according to the configuration of the GS velocity....
In this paper, the standard almost complex structure on the tangent bunle of a Riemannian manifold will be generalized. We will generalize the standard one to the new ones such that the induced -tensor on the tangent bundle using these structures and Liouville -form will be a Riemannian metric. Moreover, under the integrability condition, the curvature operator of the base manifold will be classified.
We propose a new construction of characteristic classes for noncommutative algebraic principal bundles (Hopf-Galois extensions) with values in Hochschild and cyclic homology.
The theory of variational bicomplexes is a natural geometrical setting for the calculus of variations on a fibred manifold. It is a well–established theory although not spread out very much among theoretical and mathematical physicists. Here, we present a new approach to infinite order variational bicomplexes based upon the finite order approach due to Krupka. In this approach the information related to the order of jets is lost, but we have a considerable simplification both in the exposition...
For symmetric classical field theories on principal bundles there are two methods of symmetry reduction: covariant and dynamic. Assume that the classical field theory is given by a symmetric covariant Lagrangian density defined on the first jet bundle of a principal bundle. It is shown that covariant and dynamic reduction lead to equivalent equations of motion. This is achieved by constructing a new Lagrangian defined on an infinite dimensional space which turns out to be gauge group invariant.
A new model for propagation of long waves including the coastal area is introduced. This model considers only the motion of the surface of the sea under the condition of preservation of mass and the sea floor is inserted into the model as an obstacle to the motion. Thus we obtain a constrained hyperbolic free-boundary problem which is then solved numerically by a minimizing method called the discrete Morse semi-flow. The results of the computation in 1D show the adequacy of the proposed model.
We give a relatively simple (self-contained) proof that every real-valued Lipschitz function on (or more generally on an Asplund space) has points of Fréchet differentiability. Somewhat more generally, we show that a real-valued Lipschitz function on a separable Banach space has points of Fréchet differentiability provided that the closure of the set of its points of Gâteaux differentiability is norm separable.
The paper studies the relation between asymptotically developable functions in several complex variables and their extensions as functions of real variables. A new Taylor type formula with integral remainder in several variables is an essential tool. We prove that strongly asymptotically developable functions defined on polysectors have extensions from any subpolysector; the Gevrey case is included.