Displaying 1161 – 1180 of 5443

Showing per page

Discrete version of Dungey’s proof for the gradient heat kernel estimate on coverings

Satoshi Ishiwata (2007)

Annales mathématiques Blaise Pascal

We obtain another proof of a Gaussian upper estimate for a gradient of the heat kernel on cofinite covering graphs whose covering transformation group has a polynomial volume growth. It is proved by using the temporal regularity of the discrete heat kernel obtained by Blunck [2] and Christ [3] along with the arguments of Dungey [7] on covering manifolds.

Discreteness of the spectrum for some differential operators with unbounded coefficients in R n

Giorgio Metafune, Diego Pallara (2000)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We give sufficient conditions for the discreteness of the spectrum of differential operators of the form A u = - u + F , u in L μ 2 R n where d μ x = e - F x d x and for Schrödinger operators in L 2 R n . Our conditions are also necessary in the case of polynomial coefficients.

Discrétisation de zeta-déterminants d’opérateurs de Schrödinger sur le tore

Laurent Chaumard (2006)

Bulletin de la Société Mathématique de France

Nous donnons ici deux résultats sur le déterminant ζ -régularisé det ζ A d’un opérateur de Schrödinger A = Δ g + V sur une variété compacte . Nous construisons, pour = S 1 × S 1 , une suite ( G n , ρ n , Δ n ) G n est un graphe fini qui se plonge dans via ρ n de telle manière que ρ n ( G n ) soit une triangulation de et où  Δ n est un laplacien discret sur G n tel que pour tout potentiel V sur , la suite de réels det ( Δ n + V ) converge après renormalisation vers det ζ ( Δ g + V ) . Enfin, nous donnons sur toute variété riemannienne compacte ( , g ) de dimension inférieure ou égale à 3 ...

Distinguished geodesics and jacobi fields on first order jet spaces

Vladimir Balan, Nicoleta Voicu (2004)

Open Mathematics

In the framework of jet spaces endowed with a non-linear connection, the special curves of these spaces (h-paths, v-paths, stationary curves and geodesics) which extend the corresponding notions from Riemannian geometry are characterized. The main geometric objects and the paths are described and, in the case when the vertical metric is independent of fiber coordinates, the first two variations of energy and the extended Jacobi field equations are derived.

Distributions involutives singulières

Dominique Cerveau (1979)

Annales de l'institut Fourier

On étudie les distributions involutives, i.e. les modules D de champs de vecteurs stables par le crochet de Lie, au voisinage d’un point 0 singulier. Après s’être ramené au cas purement singulier, c’est-à-dire où tous les éléments de D s’annulent en 0, des hypothèses génériques portant sur la partie linéaire de D nous permettent d’obtenir la linéarisation.

Divergence operators and odd Poisson brackets

Yvette Kosmann-Schwarzbach, Juan Monterde (2002)

Annales de l’institut Fourier

We define the divergence operators on a graded algebra, and we show that, given an odd Poisson bracket on the algebra, the operator that maps an element to the divergence of the hamiltonian derivation that it defines is a generator of the bracket. This is the “odd laplacian”, Δ , of Batalin-Vilkovisky quantization. We then study the generators of odd Poisson brackets on supermanifolds, where divergences of graded vector fields can be defined either in terms of berezinian volumes or of graded connections. Examples...

Currently displaying 1161 – 1180 of 5443