The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 221 –
240 of
258
Consider an infinite dimensional
diffusion process process on TZd, where
T is the circle, defined by the action of its generator
L on C2(TZd) local functions as
. Assume that the coefficients, ai and bi are
smooth,
bounded, finite range with uniformly bounded second order
partial derivatives, that ai is only a function of
and that .
Suppose ν is an invariant product measure. Then,
if ν is the Lebesgue measure or if d=1,2, it is the
unique invariant measure. Furthermore, if ν is
translation...
The univariate conditioning of copulas is studied, yielding a construction method for copulas based on an a priori given copula. Based on the gluing method, g-ordinal sum of copulas is introduced and a representation of copulas by means of g-ordinal sums is given. Though different right conditionings commute, this is not the case of right and left conditioning, with a special exception of Archimedean copulas. Several interesting examples are given. Especially, any Ali-Mikhail-Haq copula with a given...
We investigate in this paper the properties of some dilatations or contractions of a sequence (αn)n≥1 of Lr-optimal quantizers of an -valued random vector defined in the probability space with distribution . To be precise, we investigate the Ls-quantization rate of sequences when or s ∈ (r, +∞) and . We show that for a wide family of distributions, one may always find parameters (θ,µ) such that (αnθ,µ)n≥1 is Ls-rate-optimal. For the Gaussian and the exponential distributions we show...
A simple renewal process is a stochastic process taking values in where the lengths of the runs of ’s between successive zeros are independent and identically distributed. After observing one would like to estimate the time remaining until the next occurrence of a zero, and the problem of universal estimators is to do so without prior knowledge of the distribution of the process. We give some universal estimates with rates for the expected time to renewal as well as for the conditional distribution...
We study the universality of the local eigenvalue statistics of Gaussian divisible Hermitian Wigner matrices. These random matrices are obtained by adding an independent GUE matrix to an Hermitian random matrix with independent elements, a Wigner matrix. We prove that Tracy–Widom universality holds at the edge in this class of random matrices under the optimal moment condition that there is a uniform bound on the fourth moment of the matrix elements. Furthermore, we show that universality holds...
We construct a class of conformally invariant measures on sets (or paths) and
we study the critical exponents called intersection exponents associated to these measures. We show that these exponents exist and that they correspond to intersection exponents between planar Brownian motions. More precisely, using the definitions and results of our
paper [27], we show that any set defined under such a conformal invariant measure behaves exactly as a pack (containing maybe a non-integer number) of Brownian...
We prove two universality results for random tensors of arbitrary rank . We first prove that a random tensor whose entries are independent, identically distributed, complex random variables converges in distribution in the large limit to the same limit as the distributional limit of a Gaussian tensor model. This generalizes the universality of random matrices to random tensors. We then prove a second, stronger, universality result. Under the weaker assumption that the joint probability distribution...
We consider complex sample covariance matrices MN = (1/N)YY* where Y is a N × p random matrix with i.i.d. entries Yij, 1 ≤ i ≤ N, 1 ≤ j ≤ p, with distribution F. Under some regularity and decay assumptions on F, we prove universality of some local eigenvalue statistics in the bulk of the spectrum in the limit where N → ∞ and limN→∞ p/N = γ for any real number γ ∈ (0, ∞).
There has been much success in describing the limiting spatial fluctuations of growth models in the Kardar–Parisi–Zhang (KPZ) universality class. A proper rescaling of time should introduce a non-trivial temporal dimension to these limiting fluctuations. In one-dimension, the KPZ class has the dynamical scaling exponent z = 3/2, that means one should find a universal space–time limiting process under the scaling of time as tT, space like t2/3X and fluctuations like t1/3 as t → ∞. In this paper we...
We consider the one-sided exit problem – also called one-sided barrier problem – for (-fractionally) integrated random walks and Lévy processes. Our main result is that there exists a positive, non-increasing function such that the probability that any -fractionally integrated centered Lévy processes (or random walk) with some finite exponential moment stays below a fixed level until time behaves as for large . We also investigate when the fixed level can be replaced by a different barrier...
We lift important results about universally typical sets, typically sampled sets, and empirical entropy estimation in the theory of samplings of discrete ergodic information sources from the usual one-dimensional discrete-time setting to a multidimensional lattice setting. We use techniques of packings and coverings with multidimensional windows to construct sequences of multidimensional array sets which in the limit build the generated samples of any ergodic source of entropy rate below an with...
Currently displaying 221 –
240 of
258