The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 281 –
300 of
310
In this note, we prove a version of the conjectured duality for Schramm-Loewner Evolutions, by establishing exact identities in distribution between some boundary arcs of chordal , , and appropriate versions of , .
In actuarial practice the credibility models must face the problem of outliers and missing observations. If using the -estimation principle from robust statistics in combination with Kalman filtering one obtains the solution of this problem that is acceptable in the numerical framework of the practical actuarial credibility. The credibility models are classified as static and dynamic in this paper and the shrinkage is used for the final ratemaking.
This paper proposes a general framework to compare the strength of the dependence in survival models, as time changes, i. e. given remaining lifetimes , to compare the dependence of given , and given , where . More precisely, analytical results will be obtained in the case the survival copula of is either Archimedean or a distorted copula. The case of a frailty based model will also be discussed in details.
We investigate the problem of power utility maximization considering risk management and strategy constraints. The aim of this paper is to obtain admissible dynamic portfolio strategies. In case the floor is guaranteed with probability one, we provide two admissible solutions, the option based portfolio insurance in the constrained model, and the alternative method and show that none of the solutions dominate the other. In case the floor is guaranteed partially, we provide one admissible solution,...
We consider an illiquid financial market with different regimes modeled by a continuous time finite-state Markov chain. The investor can trade a stock only at the discrete arrival times of a Cox process with intensity depending on the market regime. Moreover, the risky asset price is subject to liquidity shocks, which change its rate of return and volatility, and induce jumps on its dynamics. In this setting, we study the problem of an economic agent optimizing her expected utility from consumption...
We solve an optimal cost problem for a stochastic
Navier-Stokes equation in space dimension 2 by proving
existence and uniqueness of a smooth solution of the
corresponding Hamilton-Jacobi-Bellman equation.
In this paper, we study one kind of stochastic recursive optimal control problem for the systems described by stochastic differential equations with delay (SDDE). In our framework, not only the dynamics of the systems but also the recursive utility depend on the past path segment of the state process in a general form. We give the dynamic programming principle for this kind of optimal control problems and show that the value function is the viscosity solution of the corresponding infinite dimensional...
This paper considers dynamic term structure models like the ones appearing in portfolio credit risk modelling or life insurance. We study general forward rate curves driven by infinitely many Brownian motions and an integer-valued random measure, generalizing existing approaches in the literature. A precise characterization of absence of arbitrage in such markets is given in terms of a suitable criterion for no asymptotic free lunch (NAFL). From this, we obtain drift conditions which are equivalent...
We apply dynamical ideas within probability theory, proving an almost-sure invariance principle in log density for stable processes. The familiar scaling property (self-similarity) of the stable process has a stronger expression, that the scaling flow on Skorokhod path space is a Bernoulli flow. We prove that typical paths of a random walk with i.i.d. increments in the domain of attraction of a stable law can be paired with paths of a stable process so that, after applying a non-random regularly...
Currently displaying 281 –
300 of
310