Displaying 541 – 560 of 1119

Showing per page

Static hedging of barrier options with a smile : an inverse problem

Claude Bardos, Raphaël Douady, Andrei Fursikov (2002)

ESAIM: Control, Optimisation and Calculus of Variations

Let L be a parabolic second order differential operator on the domain Π ¯ = 0 , T × . Given a function u ^ : R and x ^ > 0 such that the support of u ^ is contained in ( - , - x ^ ] , we let y ^ : Π ¯ be the solution to the equation: L y ^ = 0 , y ^ | { 0 } × = u ^ . Given positive bounds 0 < x 0 < x 1 , we seek a function u with support in x 0 , x 1 such that the corresponding solution y satisfies: y ( t , 0 ) = y ^ ( t , 0 ) t 0 , T . We prove in this article that, under some regularity conditions on the coefficients of L , continuous solutions are unique and dense in the sense that y ^ | [ 0 , T ] × { 0 } can be C 0 -approximated, but an exact solution does not...

Static Hedging of Barrier Options with a Smile: An Inverse Problem

Claude Bardos, Raphaël Douady, Andrei Fursikov (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Let L be a parabolic second order differential operator on the domain Π ¯ = 0 , T × . Given a function u ^ : R and x ^ > 0 such that the support of û is contained in ( - , - x ^ ] , we let y ^ : Π ¯ be the solution to the equation: L y ^ = 0 , y ^ | { 0 } × = u ^ . Given positive bounds 0 < x 0 < x 1 , we seek a function u with support in x 0 , x 1 such that the corresponding solution y satisfies: y ( t , 0 ) = y ^ ( t , 0 ) t 0 , T . We prove in this article that, under some regularity conditions on the coefficients of L, continuous solutions are unique and dense in the sense that y ^ | [ 0 , T ] × { 0 } can be C0-approximated, but an exact solution...

Stationary distribution of absolute autoregression

Jiří Anděl, Pavel Ranocha (2005)

Kybernetika

A procedure for computation of stationary density of the absolute autoregression (AAR) model driven by white noise with symmetrical density is described. This method is used for deriving explicit formulas for stationary distribution and further characteristics of AAR models with given distribution of white noise. The cases of Gaussian, Cauchy, Laplace and discrete rectangular distribution are investigated in detail.

Stationary distributions for jump processes with memory

K. Burdzy, T. Kulczycki, R. L. Schilling (2012)

Annales de l'I.H.P. Probabilités et statistiques

We analyze a jump processes Z with a jump measure determined by a “memory” process S . The state space of ( Z , S ) is the Cartesian product of the unit circle and the real line. We prove that the stationary distribution of ( Z , S ) is the product of the uniform probability measure and a Gaussian distribution.

Stationary gaussian random fields on hyperbolic spaces and on euclidean spheres

S. Cohen, M. A. Lifshits (2012)

ESAIM: Probability and Statistics

We recall necessary notions about the geometry and harmonic analysis on a hyperbolic space and provide lecture notes about homogeneous random functions parameterized by this space. The general principles are illustrated by construction of numerous examples analogous to Euclidean case. We also give a brief survey of the fields parameterized by Euclidean spheres. At the end we give a list of important open questions in hyperbolic case.

Stationary Gaussian random fields on hyperbolic spaces and on Euclidean spheres∗∗∗

S. Cohen, M. A. Lifshits (2012)

ESAIM: Probability and Statistics

We recall necessary notions about the geometry and harmonic analysis on a hyperbolic space and provide lecture notes about homogeneous random functions parameterized by this space. The general principles are illustrated by construction of numerous examples analogous to Euclidean case. We also give a brief survey of the fields parameterized by Euclidean spheres. At the end we give a list of important open questions in hyperbolic case.

Stationary map coloring

Omer Angel, Itai Benjamini, Ori Gurel-Gurevich, Tom Meyerovitch, Ron Peled (2012)

Annales de l'I.H.P. Probabilités et statistiques

We consider a planar Poisson process and its associated Voronoi map. We show that there is a proper coloring with 6 colors of the map which is a deterministic isometry-equivariant function of the Poisson process. As part of the proof we show that the 6-core of the corresponding Delaunay triangulation is empty. Generalizations, extensions and some open questions are discussed.

Stationary Quantum Markov processes as solutions of stochastic differential equations

Jürgen Hellmich, Claus Köstler, Burkhard Kümmerer (1998)

Banach Center Publications

From the operator algebraic approach to stationary (quantum) Markov processes there has emerged an axiomatic definition of quantum white noise. The role of Brownian motion is played by an additive cocycle with respect to its time evolution. In this report we describe some recent work, showing that this general structure already allows a rich theory of stochastic integration and stochastic differential equations. In particular, if a quantum Markov process is represented by a unitary cocycle, we can...

Currently displaying 541 – 560 of 1119