State tameness: a new approach for credit constrains.
Let be a parabolic second order differential operator on the domain Given a function and such that the support of is contained in , we let be the solution to the equation:Given positive bounds we seek a function with support in such that the corresponding solution satisfies:We prove in this article that, under some regularity conditions on the coefficients of continuous solutions are unique and dense in the sense that can be -approximated, but an exact solution does not...
Let L be a parabolic second order differential operator on the domain Given a function and such that the support of û is contained in , we let be the solution to the equation: Given positive bounds we seek a function u with support in such that the corresponding solution y satisfies: We prove in this article that, under some regularity conditions on the coefficients of L, continuous solutions are unique and dense in the sense that can be C0-approximated, but an exact solution...
A procedure for computation of stationary density of the absolute autoregression (AAR) model driven by white noise with symmetrical density is described. This method is used for deriving explicit formulas for stationary distribution and further characteristics of AAR models with given distribution of white noise. The cases of Gaussian, Cauchy, Laplace and discrete rectangular distribution are investigated in detail.
We analyze a jump processes with a jump measure determined by a “memory” process . The state space of is the Cartesian product of the unit circle and the real line. We prove that the stationary distribution of is the product of the uniform probability measure and a Gaussian distribution.
We recall necessary notions about the geometry and harmonic analysis on a hyperbolic space and provide lecture notes about homogeneous random functions parameterized by this space. The general principles are illustrated by construction of numerous examples analogous to Euclidean case. We also give a brief survey of the fields parameterized by Euclidean spheres. At the end we give a list of important open questions in hyperbolic case.
We recall necessary notions about the geometry and harmonic analysis on a hyperbolic space and provide lecture notes about homogeneous random functions parameterized by this space. The general principles are illustrated by construction of numerous examples analogous to Euclidean case. We also give a brief survey of the fields parameterized by Euclidean spheres. At the end we give a list of important open questions in hyperbolic case.
We consider a planar Poisson process and its associated Voronoi map. We show that there is a proper coloring with 6 colors of the map which is a deterministic isometry-equivariant function of the Poisson process. As part of the proof we show that the 6-core of the corresponding Delaunay triangulation is empty. Generalizations, extensions and some open questions are discussed.
We discuss various properties of Probabilistic Cellular Automata, such as the structure of the set of stationary measures and multiplicity of stationary measures (or phase transition) for reversible models.
We discuss various properties of Probabilistic Cellular Automata, such as the structure of the set of stationary measures and multiplicity of stationary measures (or phase transition) for reversible models.
From the operator algebraic approach to stationary (quantum) Markov processes there has emerged an axiomatic definition of quantum white noise. The role of Brownian motion is played by an additive cocycle with respect to its time evolution. In this report we describe some recent work, showing that this general structure already allows a rich theory of stochastic integration and stochastic differential equations. In particular, if a quantum Markov process is represented by a unitary cocycle, we can...