Displaying 781 – 800 of 10046

Showing per page

About stability of risk-seeking optimal stopping

Raúl Montes-de-Oca, Elena Zaitseva (2014)

Kybernetika

We offer the quantitative estimation of stability of risk-sensitive cost optimization in the problem of optimal stopping of Markov chain on a Borel space X . It is supposed that the transition probability p ( · | x ) , x X is approximated by the transition probability p ˜ ( · | x ) , x X , and that the stopping rule f ˜ * , which is optimal for the process with the transition probability p ˜ is applied to the process with the transition probability p . We give an upper bound (expressed in term of the total variation distance: sup x X p ( · | x ) - p ˜ ( · | x ) ) for...

About the density of spectral measure of the two-dimensional SaS random vector

Marta Borowiecka-Olszewska, Jolanta K. Misiewicz (2003)

Discussiones Mathematicae Probability and Statistics

In this paper, we consider a symmetric α-stable p-sub-stable two-dimensional random vector. Our purpose is to show when the function e x p - ( | a | p + | b | p ) α / p is a characteristic function of such a vector for some p and α. The solution of this problem we can find in [3], in the language of isometric embeddings of Banach spaces. Our proof is based on simple properties of stable distributions and some characterization given in [4].

About the generating function of a left bounded integer-valued random variable

Charles Delorme, Jean-Marc Rinkel (2008)

Bulletin de la Société Mathématique de France

We give a relation between the sign of the mean of an integer-valued, left bounded, random variable X and the number of zeros of 1 - Φ ( z ) inside the unit disk, where Φ is the generating function of X , under some mild conditions

About the Lindeberg method for strongly mixing sequences

Emmanuel Rio (2010)

ESAIM: Probability and Statistics

We extend the Lindeberg method for the central limit theorem to strongly mixing sequences. Here we obtain a generalization of the central limit theorem of Doukhan, Massart and Rio to nonstationary strongly mixing triangular arrays. The method also provides estimates of the Lévy distance between the distribution of the normalized sum and the standard normal.

About the linear-quadratic regulator problem under a fractional brownian perturbation

M. L. Kleptsyna, Alain Le Breton, M. Viot (2003)

ESAIM: Probability and Statistics

In this paper we solve the basic fractional analogue of the classical linear-quadratic gaussian regulator problem in continuous time. For a completely observable controlled linear system driven by a fractional brownian motion, we describe explicitely the optimal control policy which minimizes a quadratic performance criterion.

About the linear-quadratic regulator problem under a fractional Brownian perturbation

M. L. Kleptsyna, Alain Le Breton, M. Viot (2010)

ESAIM: Probability and Statistics

In this paper we solve the basic fractional analogue of the classical linear-quadratic Gaussian regulator problem in continuous time. For a completely observable controlled linear system driven by a fractional Brownian motion, we describe explicitely the optimal control policy which minimizes a quadratic performance criterion.

Absorption in stochastic epidemics

Josef Štěpán, Jakub Staněk (2009)

Kybernetika

A two dimensional stochastic differential equation is suggested as a stochastic model for the Kermack–McKendrick epidemics. Its strong (weak) existence and uniqueness and absorption properties are investigated. The examples presented in Section 5 are meant to illustrate possible different asymptotics of a solution to the equation.

Currently displaying 781 – 800 of 10046