On the generalized logistic and log-logistic distributions
Consider a stochastic heat equation ∂tu=κ ∂xx2u+σ(u)ẇ for a space–time white noise ẇ and a constant κ>0. Under some suitable conditions on the initial function u0 and σ, we show that the quantities lim sup t→∞t−1sup x∈Rln El(|ut(x)|2) and lim sup t→∞t−1ln E(sup x∈R|ut(x)|2) are equal, as well as bounded away from zero and infinity by explicit multiples of 1/κ. Our proof works by demonstrating quantitatively that the peaks of the stochastic process x↦ut(x) are highly concentrated...
Let be a group endowed with a length function , and let be a linear subspace of . We say that satisfies the Haagerup inequality if there exists constants such that, for any , the convolutor norm of on is dominated by times the norm of . We show that, for , the Haagerup inequality can be expressed in terms of decay of random walks associated with finitely supported symmetric probability measures on . If is a word length function on a finitely generated group , we show that,...
This paper is devoted to the helices processes, i.e. the solutions H : ℝ × Ω → ℝd, (t, ω) ↦ H(t, ω) of the helix equation where Φ : ℝ × Ω → Ω, (t, ω) ↦ Φ(t, ω) is a dynamical system on a measurable space (Ω, ℱ).More precisely, we investigate dominated solutions and non differentiable solutions of the helix equation. For the last case, the Wiener helix plays a fundamental role. Moreover, some relations with the cocycle equation defined...
Let X be a countable discrete Abelian group, Aut(X) the set of automorphisms of X, and I(X) the set of idempotent distributions on X. Assume that α₁, α₂, β₁, β₂ ∈ Aut(X) satisfy . Let ξ₁, ξ₂ be independent random variables with values in X and distributions μ₁, μ₂. We prove that the symmetry of the conditional distribution of L₂ = β₁ξ₁ + β₂ξ₂ given L₁ = α₁ξ₁ + α₂ξ₂ implies that μ₁, μ₂ ∈ I(X) if and only if the group X contains no elements of order two. This theorem can be considered as an analogue...
The paper contains a new and elementary proof of the fact that if α ∈ (0,1] then every scale mixture of a symmetric α-stable probability measure is infinitely divisible. This property is known to be a consequence of Kelker's result for the Cauchy distribution and some nontrivial properties of completely monotone functions. It is known that this property does not hold for α = 2. The problem discussed in the paper is still open for α ∈ (1,2).
In this paper we solve the basic fractional analogue of the classical infinite time horizon linear-quadratic gaussian regulator problem. For a completely observable controlled linear system driven by a fractional brownian motion, we describe explicitely the optimal control policy which minimizes an asymptotic quadratic performance criterion.
In this paper we solve the basic fractional analogue of the classical infinite time horizon linear-quadratic Gaussian regulator problem. For a completely observable controlled linear system driven by a fractional Brownian motion, we describe explicitely the optimal control policy which minimizes an asymptotic quadratic performance criterion.