Displaying 181 – 200 of 543

Showing per page

The gradient superconvergence of the finite volume method for a nonlinear elliptic problem of nonmonotone type

Tie Zhu Zhang, Shu Hua Zhang (2015)

Applications of Mathematics

We study the superconvergence of the finite volume method for a nonlinear elliptic problem using linear trial functions. Under the condition of C -uniform meshes, we first establish a superclose weak estimate for the bilinear form of the finite volume method. Then, we prove that on the mesh point set S , the gradient approximation possesses the superconvergence: max P S | ( u - ¯ u h ) ( P ) | = O ( h 2 ) | ln h | 3 / 2 , where ¯ denotes the average gradient on elements containing vertex P . Furthermore, by using the interpolation post-processing technique,...

The hp-version of the boundary element method with quasi-uniform meshes in three dimensions

Alexei Bespalov, Norbert Heuer (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

We prove an a priori error estimate for the hp-version of the boundary element method with hypersingular operators on piecewise plane open or closed surfaces. The underlying meshes are supposed to be quasi-uniform. The solutions of problems on polyhedral or piecewise plane open surfaces exhibit typical singularities which limit the convergence rate of the boundary element method. On closed surfaces, and for sufficiently smooth given data, the solution is H1-regular whereas, on open surfaces, edge...

The impact of uncertain parameters on ratchetting trends in hypoplasticity

Chleboun, Jan, Runcziková, Judita, Krejčí, Pavel (2023)

Programs and Algorithms of Numerical Mathematics

Perturbed parameters are considered in a hypoplastic model of granular materials. For fixed parameters, the model response to a periodic stress loading and unloading converges to a limit state of strain. The focus of this contribution is the assessment of the change in the limit strain caused by varying model parameters.

Currently displaying 181 – 200 of 543