Displaying 241 – 260 of 497

Showing per page

Error estimates for finite element approximations of elliptic control problems

Walter Alt, Nils Bräutigam, Arnd Rösch (2007)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

We investigate finite element approximations of one-dimensional elliptic control problems. For semidiscretizations and full discretizations with piecewise constant controls we derive error estimates in the maximum norm.

Error estimates for Galerkin reduced-order models of the semi-discrete wave equation

D. Amsallem, U. Hetmaniuk (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Galerkin reduced-order models for the semi-discrete wave equation, that preserve the second-order structure, are studied. Error bounds for the full state variables are derived in the continuous setting (when the whole trajectory is known) and in the discrete setting when the Newmark average-acceleration scheme is used on the second-order semi-discrete equation. When the approximating subspace is constructed using the proper orthogonal decomposition, the error estimates are proportional to the sums...

Error estimates for linear finite elements on Bakhvalov-type meshes

Hans-Görg Roos (2006)

Applications of Mathematics

For convection-diffusion problems with exponential layers, optimal error estimates for linear finite elements on Shishkin-type meshes are known. We present the first optimal convergence result in an energy norm for a Bakhvalov-type mesh.

Error estimates for modified local Shepard’s formulas in Sobolev spaces

Carlos Zuppa (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Interest in meshfree methods in solving boundary-value problems has grown rapidly in recent years. A meshless method that has attracted considerable interest in the community of computational mechanics is built around the idea of modified local Shepard’s partition of unity. For these kinds of applications it is fundamental to analyze the order of the approximation in the context of Sobolev spaces. In this paper, we study two different techniques for building modified local Shepard’s formulas, and...

Error estimates for Modified Local Shepard's Formulas in Sobolev spaces

Carlos Zuppa (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Interest in meshfree methods in solving boundary-value problems has grown rapidly in recent years. A meshless method that has attracted considerable interest in the community of computational mechanics is built around the idea of modified local Shepard's partition of unity. For these kinds of applications it is fundamental to analyze the order of the approximation in the context of Sobolev spaces. In this paper, we study two different techniques for building modified local Shepard's formulas, and...

Error estimates for nonlinear convective problems in the finite element method

Kučera, Václav (2013)

Programs and Algorithms of Numerical Mathematics

We describe the basic ideas needed to obtain apriori error estimates for a nonlinear convection diffusion equation discretized by higher order conforming finite elements. For simplicity of presentation, we derive the key estimates under simplified assumptions, e.g. Dirichlet-only boundary conditions. The resulting error estimate is obtained using continuous mathematical induction for the space semi-discrete scheme.

Currently displaying 241 – 260 of 497