Error-estimates for the Ritz's method of finding eigenvalues and eigenfunctions
In der vorliegenden Arbeit wird der -Stabilitätsbegriff von Dahlquist, der die Grundlage für Stabilitätsuntersuchungen bei linearen Mehrschrittverfahren zur Lösung nichtlinearet Anfangswertaufgaben bildet, auf die Klasse der linearen Mehrschrittblockverfahren übertragen. Es wird nachgewiesen, das Blockverfahren, die in diesem Sinne stabil sind, höchstens die Konsistenzordnung 2 haben können.
En este trabajo se determina una transformación tipo arco seno para una distribución hipergeométrica H(N,D = pN,n) de forma que estabilice la varianza de la misma en función de la fracción p de objetos de un cierto tipo. Como caso particular de las expresiones obtenidas se deducen las dadas por F. J. Anscombe (1948) para la distribución binomial B(n,p). Al final del trabajo se efectúa una investigación numérica de los resultados obtenidos y se dan algunas aplicaciones para realizar inferencias sobre...
A new vegetative barrier can help to reduce dust concentration in a surface coal mine neighbourhood. The project reports about quantification of this effect. An air flow field is computed together with the dust transport driven by it using an in-house CFD solver. The 2D cuts of a real geometry of Bílina coal mine in north Bohemia are used. The vegetation is modelled as horizontally homogeneous porous medium which slows the air flow inside. An influence on turbulence and filtering the dust particles...
The paper is concerned with deriving functionals that give upper bounds of the difference between the exact solution of the initial-boundary value problem for the heat equation and any admissible function from the functional class naturally associated with this problem. These bounds are given by nonegative functionals called deviation majorants, which vanish only if the function and exact solution coincide. The deviation majorants pose a new type of a posteriori estimates that can be used in numerical...
The minimum variance unbiased, the maximum likelihood, the Bayes, and the naive estimates of the reliability function of a normal distribution are studied. Their asymptotic normality is proved and asymptotic expansions for both the expectation and the mean squared error are derived. The estimates are then compared using the concept of deficiency. In the end an extensive Monte Carlo study of the estimates in small samples is given.
To reconstruct an even Borel measure on the unit sphere from finitely many values of its sine transform a least square estimator is proposed. Applying results by Gardner, Kiderlen and Milanfar we estimate its rate of convergence and prove strong consistency. We close this paper by giving an estimator for the directional distribution of certain three-dimensional stationary Poisson processes of convex cylinders which have applications in material science.