Estimating the matrix p-norm.
The shape parameter of the Topp-Leone distribution is estimated from classical and Bayesian points of view based on Type I censored samples. The maximum likelihood and the approximate maximum likelihood estimates are derived. The Bayes estimate and the associated credible interval are approximated by using Lindley's approximation and Markov Chain Monte Carlo using the importance sampling technique. Monte Carlo simulations are performed to compare the performances of the proposed methods. Real and...
This paper is a continuation of the paper [6]. It dealt with parameter estimation in connecting two–stage measurements with constraints of type I. Unlike the paper [6], the current paper is concerned with a model with additional constraints of type II binding parameters of both stages. The article is devoted primarily to the computational aspects of algorithms published in [5] and its aim is to show the power of -optimum estimators. The aim of the paper is to contribute to a numerical solution...
We estimate the anisotropic index of an anisotropic fractional brownian field. For all directions, we give a convergent estimator of the value of the anisotropic index in this direction, based on generalized quadratic variations. We also prove a central limit theorem. First we present a result of identification that relies on the asymptotic behavior of the spectral density of a process. Then, we define Radon transforms of the anisotropic fractional brownian field and prove that these processes admit...
We estimate the anisotropic index of an anisotropic fractional Brownian field. For all directions, we give a convergent estimator of the value of the anisotropic index in this direction, based on generalized quadratic variations. We also prove a central limit theorem. First we present a result of identification that relies on the asymptotic behavior of the spectral density of a process. Then, we define Radon transforms of the anisotropic fractional Brownian field and prove that these processes...
Dispersion of measurement results is an important parameter that enables us not only to characterize not only accuracy of measurement but enables us also to construct confidence regions and to test statistical hypotheses. In nonlinear regression model the estimator of dispersion is influenced by a curvature of the manifold of the mean value of the observation vector. The aim of the paper is to find the way how to determine a tolerable level of this curvature.
This contribution is devoted to modeling damage zones caused by the excavation of tunnels and boreholes (EDZ zones) in connection with the issue of deep storage of spent nuclear fuel in crystalline rocks. In particular, elastic-plastic models with Mohr-Coulomb or Hoek-Brown yield criteria are considered. Selected details of the numerical solution to the corresponding problems are mentioned. Possibilities of elastic and elastic-plastic approaches are illustrated by a numerical example.
In this note quadrature formula with error estimate for functions with simple pole is discussed. Chebyshev points of the second kind are used as the nodes of integration.