Displaying 321 – 340 of 499

Showing per page

Numerical investigation of a new class of waves in an open nonlinear heat-conducting medium

Milena Dimova, Stefka Dimova, Daniela Vasileva (2013)

Open Mathematics

The paper contributes to the problem of finding all possible structures and waves, which may arise and preserve themselves in the open nonlinear medium, described by the mathematical model of heat structures. A new class of self-similar blow-up solutions of this model is constructed numerically and their stability is investigated. An effective and reliable numerical approach is developed and implemented for solving the nonlinear elliptic self-similar problem and the parabolic problem. This approach...

Numerical investigation of dynamic capillary pressure in two-phase flow in porous medium

Radek Fučík, Jiří Mikyška (2011)

Mathematica Bohemica

In order to investigate effects of the dynamic capillary pressure-saturation relationship used in the modelling of a flow in porous media, a one-dimensional fully implicit numerical scheme is proposed. The numerical scheme is used to simulate an experimental procedure using a measured dataset for the sand and fluid properties. Results of simulations using different models for the dynamic effect term in capillary pressure-saturation relationship are presented and discussed.

Numerical methods for fourth order nonlinear degenerate diffusion problems

Jürgen Becker, Günther Grün, Martin Lenz, Martin Rumpf (2002)

Applications of Mathematics

Numerical schemes are presented for a class of fourth order diffusion problems. These problems arise in lubrication theory for thin films of viscous fluids on surfaces. The equations being in general fourth order degenerate parabolic, additional singular terms of second order may occur to model effects of gravity, molecular interactions or thermocapillarity. Furthermore, we incorporate nonlinear surface tension terms. Finally, in the case of a thin film flow driven by a surface active agent (surfactant),...

Numerical methods for linear minimax estimation

Norbert Gaffke, Berthold Heiligers (2000)

Discussiones Mathematicae Probability and Statistics

We discuss two numerical approaches to linear minimax estimation in linear models under ellipsoidal parameter restrictions. The first attacks the problem directly, by minimizing the maximum risk among the estimators. The second method is based on the duality between minimax and Bayes estimation, and aims at finding a least favorable prior distribution.

Numerical methods for phase transition problems

Claudio Verdi (1998)

Bollettino dell'Unione Matematica Italiana

Nel presente articolo si illustrano alcuni dei principali metodi numerici per l'approssimazione di modelli matematici legati ai fenomeni di transizione di fase. Per semplificare e contenere l'esposizione ci siamo limitati a discutere con un certo dettaglio i metodi più recenti, presentandoli nel caso di problemi modello, quali il classico problema di Stefan e l'evoluzione di superficie per curvatura media, solo accennando alle applicazioni e modelli più generali.

Numerical minimization of eigenmodes of a membrane with respect to the domain

Édouard Oudet (2004)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we introduce a numerical approach adapted to the minimization of the eigenmodes of a membrane with respect to the domain. This method is based on the combination of the Level Set method of S. Osher and J.A. Sethian with the relaxed approach. This algorithm enables both changing the topology and working on a fixed regular grid.

Numerical minimization of eigenmodes of a membrane with respect to the domain

Édouard Oudet (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we introduce a numerical approach adapted to the minimization of the eigenmodes of a membrane with respect to the domain. This method is based on the combination of the Level Set method of S. Osher and J.A. Sethian with the relaxed approach. This algorithm enables both changing the topology and working on a fixed regular grid.

Numerical model of a pine in a wind

Jan Korbelář, Drahoslava Janovská (1999)

Applications of Mathematics

Steady-state nonlinear differential equations govering the stem curve of a wind-loaded pine are derived and solved numerically. Comparison is made between the results computed and the data from photographs of a pine stem during strong wind. The pine breaking is solved at the end.

Currently displaying 321 – 340 of 499