Stability in the wave equation coupled with heat flow.
We consider numerical approximations of stationary incompressible Navier-Stokes flows in 3D exterior domains, with nonzero velocity at infinity. It is shown that a P1-P1 stabilized finite element method proposed by C. Rebollo: A term by term stabilization algorithm for finite element solution of incompressible flow problems, Numer. Math. 79 (1998), 283–319, is stable when applied to a Navier-Stokes flow in a truncated exterior domain with a pointwise boundary condition on the artificial boundary....
We assume the nonlinear parabolic problem in a time dependent domain, where the evolution of the domain is described by a regular given mapping. The problem is discretized by the discontinuous Galerkin (DG) method modified by the right Radau quadrature in time with the aid of Arbitrary Lagrangian-Eulerian(ALE) formulation. The sketch of the proof of the stability of the method is shown.
We assume the heat equation in a time dependent domain, where the evolution of the domain is described by a given mapping. The problem is discretized by the discontinuous Galerkin (DG) method in space as well as in time with the aid of Arbitrary Lagrangian-Eulerian (ALE) method. The sketch of the proof of the stability of the method is shown.
We consider a generalized 1-D von Foerster equation. We present two discretization methods for the initial value problem and study stability of finite difference schemes on regular meshes.
The stability of flat interfaces with respect to a spatial semidiscretization of a solidification model is analyzed. The considered model is the quasi-static approximation of the Stefan problem with dynamical Gibbs–Thomson law. The stability analysis bases on an argument developed by Mullins and Sekerka for the undiscretized case. The obtained stability properties differ from those with respect to the quasi-static model for certain parameter values and relatively coarse meshes. Moreover, consequences...
The stability of flat interfaces with respect to a spatial semidiscretization of a solidification model is analyzed. The considered model is the quasi-static approximation of the Stefan problem with dynamical Gibbs–Thomson law. The stability analysis bases on an argument developed by Mullins and Sekerka for the undiscretized case. The obtained stability properties differ from those with respect to the quasi-static model for certain parameter values and relatively coarse meshes. Moreover,...
We give an analysis of the stability and uniqueness of the simply laminated microstructure for all three tetragonal to monoclinic martensitic transformations. The energy density for tetragonal to monoclinic transformations has four rotationally invariant wells since the transformation has four variants. One of these tetragonal to monoclinic martensitic transformations corresponds to the shearing of the rectangular side, one corresponds to the shearing of the square base, and one corresponds to...