Stable finite element methods for the Stokes problem.
Stable hypothesis are hypothesis that may refer either for the fixed part or for the random part of the model. We will consider such hypothesis for models with balanced cross-nesting. Generalized F tests will be derived. It will be shown how to use Monte-Carlo methods to evaluate p-values for those tests.
We consider the magnetic induction equation for the evolution of a magnetic field in a plasma where the velocity is given. The aim is to design a numerical scheme which also handles the divergence constraint in a suitable manner. We design and analyze an upwind scheme based on the symmetrized version of the equations in the non-conservative form. The scheme is shown to converge to a weak solution of the equations. Furthermore, the discrete divergence produced by the scheme is shown to be...
We review in this paper a class of schemes for the numerical simulation of compressible flows. In order to ensure the stability of the discretizations in a wide range of Mach numbers and introduce sufficient decoupling for the numerical resolution, we choose to implement and study pressure correction schemes on staggered meshes. The implicit version of the schemes is also considered for the theoretical study. We give both algorithms for the barotropic Navier-Stokes equations, for the full Navier-Stokes...
Let be a parabolic second order differential operator on the domain Given a function and such that the support of is contained in , we let be the solution to the equation:Given positive bounds we seek a function with support in such that the corresponding solution satisfies:We prove in this article that, under some regularity conditions on the coefficients of continuous solutions are unique and dense in the sense that can be -approximated, but an exact solution does not...
Let L be a parabolic second order differential operator on the domain Given a function and such that the support of û is contained in , we let be the solution to the equation: Given positive bounds we seek a function u with support in such that the corresponding solution y satisfies: We prove in this article that, under some regularity conditions on the coefficients of L, continuous solutions are unique and dense in the sense that can be C0-approximated, but an exact solution...
In this work we derive a pair of nonlinear eigenvalue problems corresponding to the one-band effective Hamiltonian accounting for the spin-orbit interaction governing the electronic states of a quantum dot. We show that the pair of nonlinear problems allows for the minmax characterization of its eigenvalues under certain conditions which are satisfied for our example of a cylindrical quantum dot and the common InAs/GaAs heterojunction. Exploiting the minmax property we devise an efficient iterative...
This paper deals with an application of regression analysis to the regulation of the blood-sugar under diabetes mellitus. Section 2 gives a description of Gram-Schmidt orthogonalization, while Section 3 discusses the difference between Gauss-Markov estimation and Least Squares Estimation. Section 4 is devoted to the statistical analysis of the blood-sugar during the night. The response change of blood-sugar is explained by three variables: time, food and physical activity ("Bewegung"). At the beginning...