Optimal convergence rates of mortar finite element methods for second-order elliptic problems
We present an improved, near-optimal hp error estimate for a non-conforming finite element method, called the mortar method (M0). We also present a new hp mortaring technique, called the mortar method (MP), and derive h, p and hp error estimates for it, in the presence of quasiuniform and non-quasiuniform meshes. Our theoretical results, augmented by the computational evidence we present, show that like (M0), (MP) is also a viable mortaring technique for the hp method.
Sequences of cubature formulas with a joint countable set of nodes are studied. Each cubature formula under consideration has only a finite number of nonzero weights. We call a sequence of such kind a multicubature formula. For a given reflexive Banach space it is shown that there is a unique optimal multicubature formula and the sequence of the norm of optimal error functionals is monotonically decreasing to 0 as the number of the formula nodes tends to infinity.
This paper is concerned with optimal design problems with a special assumption on the coefficients of the state equation. Namely we assume that the variations of these coefficients have a small amplitude. Then, making an asymptotic expansion up to second order with respect to the aspect ratio of the coefficients allows us to greatly simplify the optimal design problem. By using the notion of H-measures we are able to prove general existence theorems for small amplitude optimal design and to provide...
A design optimization problem for an elastic beam with a unilateral elastic foundation is analyzed. Euler-Bernoulli's model for the beam and Winkler's model for the foundation are considered. The state problem is represented by a nonlinear semicoercive problem of 4th order with mixed boundary conditions. The thickness of the beam and the stiffness of the foundation are optimized with respect to a cost functional. We establish solvability conditions for the state problem and study the existence of...
The present paper studies an optimization problem of dynamically loaded cylindrical tubes. This is a problem of linear elasticity theory. As we search for the optimal thickness of the tube which minimizes the displacement under forces, this is a problem of shape optimization. The mathematical model is given by a differential equation (ODE and PDE, respectively); the mechanical problem is described as an optimal control problem. We consider both the stationary (time independent) and the transient...
Finite element semidiscrete approximations on nonlinear dynamic shallow shell models in considered. It is shown that the algorithm leads to global, optimal rates of convergence. The result presented in the paper improves upon the existing literature where the rates of convergence were derived for small initial data only [19].
We consider a finite element discretization by the Taylor–Hood element for the stationary Stokes and Navier–Stokes equations with slip boundary condition. The slip boundary condition is enforced pointwise for nodal values of the velocity in boundary nodes. We prove optimal error estimates in the H1 and L2 norms for the velocity and pressure respectively.
"A high quantile is a quantile of order q with q close to one." A precise constructive definition of high quantiles is given and optimal estimates are presented.