Displaying 1101 – 1120 of 9149

Showing per page

Abelovu cenu za rok 2019 získala Karen Uhlenbecková

Marcello Ortaggio, Vojtěch Pravda (2021)

Pokroky matematiky, fyziky a astronomie

Abelovu cenu získala v roce 2019 matematička Karen Uhlenbecková. Její práce mají důležitý dopad hned na několik oborů matematiky - geometrii, analýzu i matematickou fyziku. Zásadním způsobem ovlivnila moderní pojetí geometrické analýzy. V článku se pomocí relativně jednoduchých příkladů snažíme čtenáře seznámit se dvěma z oblastí, kterými se doposud zabývala. Na závěr též velmi stručně zmiňujeme hlavní výsledky několika jejích prací.

About Delaunay triangulations and discrete maximum principles for the linear conforming FEM applied to the Poisson equation

Reiner Vanselow (2001)

Applications of Mathematics

The starting point of the analysis in this paper is the following situation: “In a bounded domain in 2 , let a finite set of points be given. A triangulation of that domain has to be found, whose vertices are the given points and which is ‘suitable’ for the linear conforming Finite Element Method (FEM).” The result of this paper is that for the discrete Poisson equation and under some weak additional assumptions, only the use of Delaunay triangulations preserves the maximum principle.

Absolute value equations with tensor product structure: Unique solvability and numerical solution

Somayeh Mollahasani, Fatemeh Panjeh Ali Beik (2022)

Applications of Mathematics

We consider the absolute value equations (AVEs) with a certain tensor product structure. Two aspects of this kind of AVEs are discussed in detail: the solvability and approximate solution. More precisely, first, some sufficient conditions are provided which guarantee the unique solvability of this kind of AVEs. Furthermore, a new iterative method is constructed for solving AVEs and its convergence properties are investigated.  The validity of established theoretical results and performance of the...

Currently displaying 1101 – 1120 of 9149