An Implementation of the Method of Ermakov and Zolotukhin for Multidimensional Integration and Interpolation.
In this article, we consider the initial value problem which is obtained after a space discretization (with space step ) of the equations governing the solidification process of a multicomponent alloy. We propose a numerical scheme to solve numerically this initial value problem. We prove an error estimate which is not affected by the step size chosen in the space discretization. Consequently, our scheme provides global convergence without any stability condition between and the time step size...
In this article, we consider the initial value problem which is obtained after a space discretization (with space step h) of the equations governing the solidification process of a multicomponent alloy. We propose a numerical scheme to solve numerically this initial value problem. We prove an error estimate which is not affected by the step size h chosen in the space discretization. Consequently, our scheme provides global convergence without any stability condition between h and the time...
We develop local and semilocal convergence results for Newton's method in order to solve nonlinear equations in a Banach space setting. The results compare favorably to earlier ones utilizing Lipschitz conditions on the second Fréchet derivative of the operators involved. Numerical examples where our new convergence conditions are satisfied but earlier convergence conditions are not satisfied are also reported.
The paper introduces the calculation of a greatest common divisor of two univariate polynomials. Euclid’s algorithm can be easily simulated by the reduction of the Sylvester matrix to an upper triangular form. This is performed by using - transformation and -factorization methods. Both procedures are described and numerically compared. Computations are performed in the floating point environment.
Here, we prove the uniform observability of a two-grid method for the semi-discretization of the -wave equation for a time ; this time, if the observation is made in , is optimal and this result improves an earlier work of Negreanu and Zuazua [C. R. Acad. Sci. Paris Sér. I 338 (2004) 413–418]. Our proof follows an Ingham type approach.
Here, we prove the uniform observability of a two-grid method for the semi-discretization of the 1D-wave equation for a time ; this time, if the observation is made in , is optimal and this result improves an earlier work of Negreanu and Zuazua [C. R. Acad. Sci. Paris Sér. I338 (2004) 413–418]. Our proof follows an Ingham type approach.
In this paper, a sub-optimal boundary control strategy for a free boundary problem is investigated. The model is described by a non-smooth convection-diffusion equation. The control problem is addressed by an instantaneous strategy based on the characteristics method. The resulting time independent control problems are formulated as function space optimization problems with complementarity constraints. At each time step, the existence of an optimal solution is proved and first-order optimality conditions...