Displaying 1601 – 1620 of 9149

Showing per page

An X-ray transform estimate in Rn.

Izabella Laba, Terence Tao (2001)

Revista Matemática Iberoamericana

We prove an x-ray estimate in general dimension which is a stronger version of Wolff's Kakeya estimate [12]. This generalizes the estimate in [13], which dealt with the n = 3 case.

Analysis and finite element error estimates for the velocity tracking problem for Stokes flows via a penalized formulation

Konstantinos Chrysafinos (2004)

ESAIM: Control, Optimisation and Calculus of Variations

A distributed optimal control problem for evolutionary Stokes flows is studied via a pseudocompressibility formulation. Several results concerning the analysis of the velocity tracking problem are presented. Semidiscrete finite element error estimates for the corresponding optimality system are derived based on estimates for the penalized Stokes problem and the BRR (Brezzi-Rappaz-Raviart) theory. Finally, the convergence of the solutions of the penalized optimality systems as ε 0 is examined.

Analysis and finite element error estimates for the velocity tracking problem for Stokes flows via a penalized formulation

Konstantinos Chrysafinos (2010)

ESAIM: Control, Optimisation and Calculus of Variations

A distributed optimal control problem for evolutionary Stokes flows is studied via a pseudocompressibility formulation. Several results concerning the analysis of the velocity tracking problem are presented. Semidiscrete finite element error estimates for the corresponding optimality system are derived based on estimates for the penalized Stokes problem and the BRR (Brezzi-Rappaz-Raviart) theory. Finally, the convergence of the solutions of the penalized optimality systems as ε → 0 is examined. ...

Analysis and numerical approximation of a parabolic-hyperbolic transmission problem

Boško Jovanović, Lubin Vulkov (2012)

Open Mathematics

In this paper we investigate a mixed parabolic-hyperbolic initial boundary value problem in two disconnected intervals with Robin-Dirichlet conjugation conditions. A finite difference scheme approximating this problem is proposed and analyzed. An estimate of the convergence rate is obtained.

Analysis of a combined barycentric finite volume—nonconforming finite element method for nonlinear convection-diffusion problems

Philippe Angot, Vít Dolejší, Miloslav Feistauer, Jiří Felcman (1998)

Applications of Mathematics

We present the convergence analysis of an efficient numerical method for the solution of an initial-boundary value problem for a scalar nonlinear conservation law equation with a diffusion term. Nonlinear convective terms are approximated with the aid of a monotone finite volume scheme considered over the finite volume barycentric mesh, whereas the diffusion term is discretized by piecewise linear nonconforming triangular finite elements. Under the assumption that the triangulations are of weakly...

Analysis of a coupled BEM/FEM eigensolver for the hydroelastic vibrations problem

Mauricio A. Barrientos, Gabriel N. Gatica, Rodolfo Rodríguez, Marcela E. Torrejón (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

A coupled finite/boundary element method to approximate the free vibration modes of an elastic structure containing an incompressible fluid is analyzed in this paper. The effect of the fluid is taken into account by means of one of the most usual procedures in engineering practice: an added mass formulation, which is posed in terms of boundary integral equations. Piecewise linear continuous elements are used to discretize the solid displacements and the fluid-solid interface variables. Spectral...

Analysis of a coupled BEM/FEM eigensolver for the hydroelastic vibrations problem

Mauricio A. Barrientos, Gabriel N. Gatica, Rodolfo Rodríguez, Marcela E. Torrejón (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

A coupled finite/boundary element method to approximate the free vibration modes of an elastic structure containing an incompressible fluid is analyzed in this paper. The effect of the fluid is taken into account by means of one of the most usual procedures in engineering practice: an added mass formulation, which is posed in terms of boundary integral equations. Piecewise linear continuous elements are used to discretize the solid displacements and the fluid-solid interface variables....

Analysis of a force-based quasicontinuum approximation

Matthew Dobson, Mitchell Luskin (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

We analyze a force-based quasicontinuum approximation to a one-dimensional system of atoms that interact by a classical atomistic potential. This force-based quasicontinuum approximation can be derived as the modification of an energy-based quasicontinuum approximation by the addition of nonconservative forces to correct nonphysical “ghost” forces that occur in the atomistic to continuum interface during constant strain. The algorithmic simplicity and consistency with the purely atomistic model at...

Currently displaying 1601 – 1620 of 9149