Displaying 161 – 180 of 265

Showing per page

Interpolation and integration based on averaged values

Borislav Bojanov (2006)

Banach Center Publications

We discuss recent results on constructing approximating schemes based on averaged values of the approximated function f over linear segments. In particular, we describe interpolation and integration formulae of high algebraic degree of precision that use weighted integrals of f over non-overlapping subintervals of the real line. The quadrature formula of this type of highest algebraic degree of precision is characterized.

Interpolation formulas for functions of exponential type

Josef Kofroň, Emílie Moravcová (2001)

Applications of Mathematics

In the paper we present a derivative-free estimate of the remainder of an arbitrary interpolation rule on the class of entire functions which, moreover, belong to the space L ( - , + ) 2 . The theory is based on the use of the Paley-Wiener theorem. The essential advantage of this method is the fact that the estimate of the remainder is formed by a product of two terms. The first term depends on the rule only while the second depends on the interpolated function only. The obtained estimate of the remainder of...

Interpolation of non-smooth functions on anisotropic finite element meshes

Thomas Apel (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, several modifications of the quasi-interpolation operator of Scott and Zhang [30] are discussed. The modified operators are defined for non-smooth functions and are suited for application on anisotropic meshes. The anisotropy of the elements is reflected in the local stability and approximation error estimates. As an application, an example is considered where anisotropic finite element meshes are appropriate, namely the Poisson problem in domains with edges.

Interpolation operators on the space of holomorphic functions on the unit circle

Josef Kofroň (2001)

Applications of Mathematics

The aim of the paper is to get an estimation of the error of the general interpolation rule for functions which are real valued on the interval [ - a , a ] , a ( 0 , 1 ) , have a holomorphic extension on the unit circle and are quadratic integrable on the boundary of it. The obtained estimate does not depend on the derivatives of the function to be interpolated. The optimal interpolation formula with mutually different nodes is constructed and an error estimate as well as the rate of convergence are obtained. The general...

Interpolation with restrictions -- role of the boundary conditions and individual restrictions

Valášek, Jan, Sváček, Petr (2023)

Programs and Algorithms of Numerical Mathematics

The contribution deals with the remeshing procedure between two computational finite element meshes. The remeshing represented by the interpolation of an approximate solution onto a new mesh is needed in many applications like e.g. in aeroacoustics, here we are particularly interested in the numerical flow simulation of a gradual channel collapse connected with a~severe deterioration of the computational mesh quality. Since the classical Lagrangian projection from one mesh to another is a dissipative...

Interval algorithm for absolute value equations

Aixiang Wang, Haijun Wang, Yongkun Deng (2011)

Open Mathematics

We investigate the absolute value equations Ax−|x| = b. Based on ɛ-inflation, an interval verification method is proposed. Theoretic analysis and numerical results show that the new proposed method is effective.

Interval analysis for certified numerical solution of problems in robotics

Jean-Pierre Merlet (2009)

International Journal of Applied Mathematics and Computer Science

Interval analysis is a relatively new mathematical tool that allows one to deal with problems that may have to be solved numerically with a computer. Examples of such problems are system solving and global optimization, but numerous other problems may be addressed as well. This approach has the following general advantages: (a) it allows to find solutions of a problem only within some finite domain which make sense as soon as the unknowns in the problem are physical parameters; (b) numerical computer...

Interval fuzzy matrix equations

Emília Draženská, Helena Myšková (2017)

Kybernetika

This paper deals with the solvability of interval matrix equations in fuzzy algebra. Fuzzy algebra is the algebraic structure in which the classical addition and multiplication are replaced by maximum and minimum, respectively. The notation 𝐀 X 𝐂 = 𝐁 , where 𝐀 , 𝐁 , 𝐂 are given interval matrices and X is an unknown matrix, represents an interval system of matrix equations. We can define several types of solvability of interval fuzzy matrix equations. In this paper, we shall deal with four of them. We define the...

Currently displaying 161 – 180 of 265