The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 301 – 320 of 421

Showing per page

On the numerical approximation of first-order Hamilton-Jacobi equations

Rémi Abgrall, Vincent Perrier (2007)

International Journal of Applied Mathematics and Computer Science

Some methods for the numerical approximation of time-dependent and steady first-order Hamilton-Jacobi equations are reviewed. Most of the discussion focuses on conformal triangular-type meshes, but we show how to extend this to the most general meshes. We review some first-order monotone schemes and also high-order ones specially dedicated to steady problems.

On the well-balance property of Roe’s method for nonconservative hyperbolic systems. Applications to shallow-water systems

Carlos Parés, Manuel Castro (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper is concerned with the numerical approximations of Cauchy problems for one-dimensional nonconservative hyperbolic systems. The first goal is to introduce a general concept of well-balancing for numerical schemes solving this kind of systems. Once this concept stated, we investigate the well-balance properties of numerical schemes based on the generalized Roe linearizations introduced by [Toumi, J. Comp. Phys. 102 (1992) 360–373]. Next, this general theory is applied to obtain well-balanced...

On the well-balance property of Roe's method for nonconservative hyperbolic systems. applications to shallow-water systems

Carlos Parés, Manuel Castro (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper is concerned with the numerical approximations of Cauchy problems for one-dimensional nonconservative hyperbolic systems. The first goal is to introduce a general concept of well-balancing for numerical schemes solving this kind of systems. Once this concept stated, we investigate the well-balance properties of numerical schemes based on the generalized Roe linearizations introduced by [Toumi, J. Comp. Phys.102 (1992) 360–373]. Next, this general theory is applied to obtain well-balanced...

Opposing flows in a one dimensional convection-diffusion problem

Eugene O’Riordan (2012)

Open Mathematics

In this paper, we examine a particular class of singularly perturbed convection-diffusion problems with a discontinuous coefficient of the convective term. The presence of a discontinuous convective coefficient generates a solution which mimics flow moving in opposing directions either side of some flow source. A particular transmission condition is imposed to ensure that the differential operator is stable. A piecewise-uniform Shishkin mesh is combined with a monotone finite difference operator...

Currently displaying 301 – 320 of 421