Displaying 321 – 340 of 595

Showing per page

L 2 -error estimates for Dirichlet and Neumann problems on anisotropic finite element meshes

Thomas Apel, Dieter Sirch (2011)

Applications of Mathematics

An L 2 -estimate of the finite element error is proved for a Dirichlet and a Neumann boundary value problem on a three-dimensional, prismatic and non-convex domain that is discretized by an anisotropic tetrahedral mesh. To this end, an approximation error estimate for an interpolation operator that is preserving the Dirichlet boundary conditions is given. The challenge for the Neumann problem is the proof of a local interpolation error estimate for functions from a weighted Sobolev space.

Lagrange multipliers for higher order elliptic operators

Carlos Zuppa (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, the Babuška’s theory of Lagrange multipliers is extended to higher order elliptic Dirichlet problems. The resulting variational formulation provides an efficient numerical squeme in meshless methods for the approximation of elliptic problems with essential boundary conditions.

Lagrange multipliers for higher order elliptic operators

Carlos Zuppa (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, the Babuška's theory of Lagrange multipliers is extended to higher order elliptic Dirichlet problems. The resulting variational formulation provides an efficient numerical squeme in meshless methods for the approximation of elliptic problems with essential boundary conditions.

Mesh Refinement For Stabilized Convection Diffusion Equations

B. Achchab, M. El Fatini, A. Souissi (2010)

Mathematical Modelling of Natural Phenomena

We derive a residual a posteriori error estimates for the subscales stabilization of convection diffusion equation. The estimator yields upper bound on the error which is global and lower bound that is local

Mimetic finite differences for elliptic problems

Franco Brezzi, Annalisa Buffa, Konstantin Lipnikov (2009)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We developed a mimetic finite difference method for solving elliptic equations with tensor coefficients on polyhedral meshes. The first-order convergence estimates in a mesh-dependent H 1 norm are derived.

Mimetic finite differences for elliptic problems

Franco Brezzi, Annalisa Buffa, Konstantin Lipnikov (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

We developed a mimetic finite difference method for solving elliptic equations with tensor coefficients on polyhedral meshes. The first-order convergence estimates in a mesh-dependent H1 norm are derived.

Currently displaying 321 – 340 of 595