Displaying 41 – 60 of 94

Showing per page

The n -centre problem of celestial mechanics for large energies

Andreas Knauf (2002)

Journal of the European Mathematical Society

We consider the classical three-dimensional motion in a potential which is the sum of n attracting or repelling Coulombic potentials. Assuming a non-collinear configuration of the n centres, we find a universal behaviour for all energies E above a positive threshold. Whereas for n = 1 there are no bounded orbits, and for n = 2 there is just one closed orbit, for n 3 the bounded orbits form a Cantor set. We analyze the symbolic dynamics and estimate Hausdorff dimension and topological entropy of this hyperbolic set....

The role of the patch test in 2D atomistic-to-continuum coupling methods∗

Christoph Ortner (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

For a general class of atomistic-to-continuum coupling methods, coupling multi-body interatomic potentials with a P1-finite element discretisation of Cauchy–Born nonlinear elasticity, this paper adresses the question whether patch test consistency (or, absence of ghost forces) implies a first-order error estimate. In two dimensions it is shown that this is indeed true under the following additional technical assumptions: (i) an energy consistency condition, (ii) locality of the interface correction,...

The role of the patch test in 2D atomistic-to-continuum coupling methods∗

Christoph Ortner (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

For a general class of atomistic-to-continuum coupling methods, coupling multi-body interatomic potentials with a P1-finite element discretisation of Cauchy–Born nonlinear elasticity, this paper adresses the question whether patch test consistency (or, absence of ghost forces) implies a first-order error estimate. In two dimensions it is shown that this is indeed true under the following additional technical assumptions: (i) an energy consistency condition, (ii) locality of the interface correction,...

The shadowing chain lemma for singular Hamiltonian systems involving strong forces

Marek Izydorek, Joanna Janczewska (2012)

Open Mathematics

We consider a planar autonomous Hamiltonian system :q+∇V(q) = 0, where the potential V: ℝ2 {ζ→ ℝ has a single well of infinite depth at some point ζ and a strict global maximum 0at two distinct points a and b. Under a strong force condition around the singularity ζ we will prove a lemma on the existence and multiplicity of heteroclinic and homoclinic orbits - the shadowing chain lemma - via minimization of action integrals and using simple geometrical arguments.

Currently displaying 41 – 60 of 94