Displaying 661 – 680 of 2623

Showing per page

Drive network to a desired orbit by pinning control

Quanjun Wu, Hua Zhang (2015)

Kybernetika

The primary objective of the present paper is to develop an approach for analyzing pinning synchronization stability in a complex delayed dynamical network with directed coupling. Some simple yet generic criteria for pinning such coupled network are derived analytically. Compared with some existing works, the primary contribution is that the synchronization manifold could be chosen as a weighted average of all the nodes states in the network for the sake of practical control tactics, which displays...

Driver's influence on kinematics of articulated bus rear axle

Bartoň, Stanislav, Krumphole, Tomáš (2013)

Programs and Algorithms of Numerical Mathematics

This paper studies kinematic properties of the rear axle of the particle coach as function of driver’s activity. The main goals are the prediction of the trajectory, the computation of the vector of velocity of each wheel of the rear axle as a function of the real velocity vector of the front coach axle and the real curvature of the bus trajectory. The computer algebra system MAPLE was used for all necessary computations.

Dynamic analysis of viscous material models

Trcala, Miroslav, Němec, Ivan, Vaněčková, Adéla, Hokeš, Filip (2021)

Programs and Algorithms of Numerical Mathematics

The article deals with the analysis of the dynamic behavior of a~concrete structural element during fast dynamic processes. The constitutive material model must be chosen appropriately so that it takes material viscosity into account when describing the behavior of material. In this analysis, it is necessary to use fairly complex viscous material models which can affect, for example, vibration damping and the dependence of strength or even of the entire stress-strain curve on the strain rate. These...

Dynamic contact problems with slip-dependent friction in viscoelasticity

Ioan Ionescu, Quoc-Lan Nguyen (2002)

International Journal of Applied Mathematics and Computer Science

The dynamic evolution with frictional contact of a viscoelastic body is considered. The assumptions on the functions used in modelling the contact are broad enough to include both the normal compliance and the Tresca models. The friction law uses a friction coefficient which is a non-monotone function of the slip. The existence and uniqueness of the solution are proved in the general three-dimensional case.

Dynamic contact problems with velocity conditions

Oanh Chau, Viorica Motreanu (2002)

International Journal of Applied Mathematics and Computer Science

We consider dynamic problems which describe frictional contact between a body and a foundation. The constitutive law is viscoelastic or elastic and the frictional contact is modelled by a general subdifferential condition on the velocity, including the normal damped responses. We derive weak formulations for the models and prove existence and uniqueness results. The proofs are based on the theory of second-order evolution variational inequalities. We show that the solutions of the viscoelastic problems...

Dynamic Damping - Comparison of different concepts from the point of view of their physical nature and effects on civil engineering structures

Němec, Ivan, Trcala, Miroslav, Vaněčková, Adéla, Rek, Václav (2019)

Programs and Algorithms of Numerical Mathematics

Sources of dynamic damping may be various. Mostly, the damping is implemented into calculations in a form of introduction of damping forces, as a product of the velocity vector and the damping matrix in an equation of motion. In practice, the damping matrix is usually assumed to be a linear combination of the mass matrix and the stiffness matrix (so called Rayleigh’s damping). This kind of damping primarily assumes the external environment viscosity as the source of damping, even though the part...

Dynamic frictional contact of a viscoelastic beam

Marco Campo, José R. Fernández, Georgios E. Stavroulakis, Juan M. Viaño (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we study the dynamic frictional contact of a viscoelastic beam with a deformable obstacle. The beam is assumed to be situated horizontally and to move, in both horizontal and tangential directions, by the effect of applied forces. The left end of the beam is clamped and the right one is free. Its horizontal displacement is constrained because of the presence of a deformable obstacle, the so-called foundation, which is modelled by a normal compliance contact condition. The effect...

Currently displaying 661 – 680 of 2623