The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The paper deals with the dimensional reduction from 2D to 1D in magnetoelastic interactions. We adopt a simplified, but nontrivial model described by the Landau-Lifshitz-Gilbert equation for the magnetization field coupled to an evolution equation for the displacement. We identify the limit problem by using the so-called energy method.
The goal of this paper is to establish a general homogenization result for linearized elasticity of an eigenvalue problem defined over perforated domains, beyond the periodic setting, within the framework of the -convergence theory. Our main homogenization result states that the knowledge of the fourth-order tensor , the -limit of , is sufficient to determine the homogenized eigenvalue problem and preserve the structure of the spectrum. This theorem is proved essentially by using Tartar’s method...
A Mimetic Discretization method for the linear elasticity problem
in mixed weakly symmetric form is developed. The scheme is shown to
converge linearly in the mesh size, independently of the
incompressibility parameter λ, provided the discrete scalar
product satisfies two given conditions. Finally, a family of
algebraic scalar products which respect the above conditions is
detailed.
We introduce and analyze a fully-mixed finite element method for a fluid-solid interaction problem in 2D. The model consists of an elastic body which is subject to a given incident wave that travels in the fluid surrounding it. Actually, the fluid is supposed to occupy an annular region, and hence a Robin boundary condition imitating the behavior of the scattered field at infinity is imposed on its exterior boundary, which is located far from the obstacle. The media are governed by the elastodynamic...
In this paper we develop a residual based a posteriori error analysis for an augmented mixed finite element method applied to the problem of linear elasticity in the plane. More precisely, we derive a reliable and efficient a posteriori error estimator for the case of pure Dirichlet boundary conditions. In addition, several numerical experiments confirming the theoretical properties of the estimator, and illustrating the capability of the corresponding adaptive algorithm to localize the singularities...
In this paper we develop a residual based a posteriori error analysis for an augmented
mixed finite element method applied to the problem of linear elasticity in the plane.
More precisely, we derive a reliable and efficient a posteriori error estimator for the
case of pure Dirichlet boundary conditions. In addition, several numerical
experiments confirming the theoretical properties of the estimator, and
illustrating the capability of the corresponding adaptive algorithm to localize the
singularities...
We study preconditioning techniques for discontinuous Galerkin discretizations of isotropic linear elasticity problems in primal (displacement) formulation. We propose subspace correction methods based on a splitting of the vector valued piecewise linear discontinuous finite element space, that are optimal with respect to the mesh size and the Lamé parameters. The pure displacement, the mixed and the traction free problems are discussed in detail. We present a convergence analysis of the proposed...
We generalize the overlapping Schwarz domain decomposition method to problems of linear elasticity. The convergence rate independent of the mesh size, coarse-space size, Korn’s constant and essential boundary conditions is proved here. Abstract convergence bounds developed here can be used for an analysis of the method applied to singular perturbations of other elliptic problems.
We present a new stabilized mixed finite element method for the linear elasticity problem in . The
approach is based on the introduction of Galerkin least-squares terms arising from the constitutive and
equilibrium equations, and from the relation defining the rotation in terms of the displacement. We show that
the resulting augmented variational formulation and the associated Galerkin scheme are well posed, and that
the latter becomes locking-free and asymptotically locking-free for Dirichlet...
The subject of topology optimization has undergone an enormous practical development since the appearance of the paper by Bendso e and Kikuchi (1988), where some ideas from homogenization theory were put into practice. Since then, several engineering applications as well as different approaches have been developed successfully. However, it is difficult to find in the literature some analytical examples that might be used as a test in order to assess the validity of the solutions obtained with different...
Currently displaying 1 –
20 of
141