The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Development of user-friendly and flexible scientific programs is a key to their usage, extension and maintenance. This paper presents an OOP (Object-Oriented Programming) approach for design of finite element analysis programs. General organization of the developed software system, called FER/SubDomain, is given which includes the solver and the pre/post processors with a friendly GUI (Graphical User Interfaces). A case study with graphical representations illustrates some functionalities of the...
Development of user-friendly and flexible scientific programs is a key to their usage, extension and maintenance. This paper presents an OOP (Object-Oriented Programming) approach for design of finite element analysis programs. General organization of the developed software system, called FER/SubDomain, is given which includes the solver and the pre/post processors with a friendly GUI (Graphical User Interfaces). A case study with graphical representations illustrates some functionalities of the...
We consider linear elliptic systems which arise in coupled elastic continuum mechanical models. In these systems, the strain tensor εP := sym (P-1∇u) is redefined to include a matrix valued inhomogeneity P(x) which cannot be described by a space dependent fourth order elasticity tensor. Such systems arise naturally in geometrically exact plasticity or in problems with eigenstresses. The tensor field P induces a structural change of the elasticity equations. For such a model the FETI-DP method is...
We consider linear elliptic systems which arise
in coupled elastic continuum mechanical models. In these systems, the strain
tensor εP := sym (P-1∇u) is redefined to include a
matrix valued inhomogeneity P(x) which cannot be described by a space
dependent fourth order elasticity tensor. Such systems arise naturally in
geometrically exact plasticity or in problems with eigenstresses.
The tensor field P induces a structural change of the elasticity equations. For
such a model the FETI-DP method is...
A unilateral contact problem with a variable coefficient of friction is solved by a simplest variant of the finite element technique. The coefficient of friction may depend on the magnitude of the tangential displacement. The existence of an approximate solution and some a priori estimates are proved.
Free material optimization solves an important problem of structural engineering, i.e. to find the stiffest structure for given loads and boundary conditions. Its mathematical formulation leads to a saddle-point problem. It can be solved numerically by the finite element method. The convergence of the finite element method can be proved if the spaces involved satisfy suitable approximation assumptions. An example of a finite-element discretization is included.
This paper deals with a finite element method to solve fluid-structure
interaction problems.
More precisely it concerns the numerical computation of harmonic
hydroelastic vibrations under gravity.
It is based on a displacement formulation for both the fluid and the solid.
Gravity effects are included on the free surface of the fluid as well
as on the liquid-solid interface.
The pressure of the fluid is used as a variable for the theoretical
analysis leading to a well posed mixed linear eigenvalue...
The plane Signorini problem is considered in the cases, when there exist non-trivial rigid admissible displacements. The existence and uniqueness of the solution and the convergence of piecewise linear finite element approximations is discussed.
The present paper deals with numerical solution of a viscoelastic plate. The discrete problem is defined by -elements and a linear multistep method. The effect of numerical integration is studied as well. The rate of cnvergence is established. Some examples are given in the conclusion.
We consider incremental problem arising in elasto-plastic models with isotropic hardening. Our goal is to derive computable and guaranteed bounds of the difference between the exact solution and any function in the admissible (energy) class of the problem considered. Such estimates are obtained by an advanced version of the variational approach earlier used for linear boundary-value problems and nonlinear variational problems with convex functionals [24, 30]. They do no contain mesh-dependent constants...
Currently displaying 1 –
18 of
18