Displaying 2101 – 2120 of 3487

Showing per page

On the stability of compressible Navier-Stokes-Korteweg equations

Tong Tang, Hongjun Gao (2014)

Annales Polonici Mathematici

We consider the compressible Navier-Stokes-Korteweg (N-S-K) equations. Through a remarkable identity, we reveal a relationship between the quantum hydrodynamic system and capillary fluids. Using some interesting inequalities from quantum fluids theory, we prove the stability of weak solutions for the N-S-K equations in the periodic domain Ω = N , when N=2,3.

On the stability of the coupling of 3D and 1D fluid-structure interaction models for blood flow simulations

Luca Formaggia, Alexandra Moura, Fabio Nobile (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider the coupling between three-dimensional (3D) and one-dimensional (1D) fluid-structure interaction (FSI) models describing blood flow inside compliant vessels. The 1D model is a hyperbolic system of partial differential equations. The 3D model consists of the Navier-Stokes equations for incompressible Newtonian fluids coupled with a model for the vessel wall dynamics. A non standard formulation for the Navier-Stokes equations is adopted to have suitable boundary conditions for the...

On the stationary Boltzmann equation

Leif Arkeryd (2001/2002)

Séminaire Équations aux dérivées partielles

For stationary kinetic equations, entropy dissipation can sometimes be used in existence proofs similarly to entropy in the time dependent situation. Recent results in this spirit obtained in collaboration with A. Nouri, are here presented for the nonlinear stationary Boltzmann equation in bounded domains of I R n with given indata and diffuse reflection on the boundary.

On the Stokes equation with Neumann boundary condition

Yoshihiro Shibata, Senjo Shimizu (2005)

Banach Center Publications

In this paper, we study the nonstationary Stokes equation with Neumann boundary condition in a bounded or an exterior domain in ℝⁿ, which is the linearized model problem of the free boundary value problem. Mainly, we prove L p - L q estimates for the semigroup of the Stokes operator. Comparing with the non-slip boundary condition case, we have the better decay estimate for the gradient of the semigroup in the exterior domain case because of the null force at the boundary.

On the structure of flows through pipe-like domains satisfying a geometrical constraint

Piotr Bogusław Mucha (2004)

Applicationes Mathematicae

We study solutions of the steady Navier-Stokes equations in a bounded 2D domain with the slip boundary conditions admitting flow across the boundary. We show conditions guaranteeing uniqueness of the solution. Next, we examine the structure of the solution considering an approximation given by a natural linearization. Suitable error estimates are also obtained.

On the Transition from Deflagration to Detonation in Narrow Channels

L. Kagan (2010)

Mathematical Modelling of Natural Phenomena

A numerical study of a two-dimensional model for premixed gas combustion in a narrow, semi-infinite channel with no-slip boundary condition is performed. The work is motivated by recent theoretical advances revealing the major role of hydraulic resistance in deflagration-to-detonation transition, one of the central yet still inadequately understood phenomena of gaseous combustion. The work is a continuation and extension of recently reported results over non-isothermal boundary conditions, wider...

Currently displaying 2101 – 2120 of 3487