The search session has expired. Please query the service again.
Displaying 1861 –
1880 of
3487
We consider the motion of a viscous compressible barotropic fluid in ℝ³ bounded by a free surface which is under constant exterior pressure, both with surface tension and without it. In the first case we prove local existence of solutions in anisotropic Hilbert spaces with noninteger derivatives. In the case without surface tension the anisotropic Sobolev spaces with integration exponent p > 3 are used to omit the coefficients which are increasing functions of 1/T, where T is the existence time....
The motion of a viscous compressible heat conducting fluid in a domain in ℝ³ bounded by a free surface is considered. We prove local existence and uniqueness of solutions in Sobolev-Slobodetskiĭ spaces in two cases: with surface tension and without it.
The local existence of solutions for the compressible Navier-Stokes equations with the Dirichlet boundary conditions in the -framework is proved. Next an almost-global-in-time existence of small solutions is shown. The considerations are made in Lagrangian coordinates. The result is sharp in the -approach, because the velocity belongs to with r > 3.
The system of zero-pressure gas dynamics conservation laws describes the dynamics of free particles sticking under collision while mass and momentum are conserved. The existence of such solutions was established some time ago. Here we report a uniqueness result that uses the Oleinik entropy condition and a cohesion condition. Both of these conditions are automatically satisfied by solutions obtained in previous existence results. Important tools in the proof of uniqueness are regularizations, generalized...
We consider pressure-driven flow between adjacent surfaces, where the fluid is assumed to have constant density. The main novelty lies in using implicit algebraic constitutive relations to describe the fluid's response to external stimuli, enabling the modeling of fluids whose responses cannot be accurately captured by conventional methods. When the implicit algebraic constitutive relations cannot be solved for the Cauchy stress in terms of the symmetric part of the velocity gradient, the traditional...
We consider the flow of a non-homogeneous viscous incompressible fluid which is known at an initial time. Our purpose is to prove that, when is smooth enough, there exists a local strong regular solution (which is global for small regular data).
In this paper, a Dirichlet-Neumann substructuring domain decomposition method is presented for a finite element approximation to the nonlinear Navier-Stokes equations. It is shown that the Dirichlet-Neumann domain decomposition sequence converges geometrically to the true solution provided the Reynolds number is sufficiently small. In this method, subdomain problems are linear. Other version where the subdomain problems are linear Stokes problems is also presented.
In this paper, a Dirichlet-Neumann substructuring domain
decomposition method is presented for a finite element
approximation to the nonlinear Navier-Stokes equations. It is
shown that the Dirichlet-Neumann domain decomposition sequence
converges geometrically to the true solution provided the Reynolds
number is sufficiently small. In this method, subdomain problems
are linear. Other version where the subdomain problems are linear
Stokes problems is also presented.
In the paper the motion of a fixed mass of a viscous compressible heat conducting fluid is considered. Assuming that the initial data are sufficiently close to an equilibrium state and the external force, the heat sources and the heat flow through the boundary vanish, we prove the existence of a global in time solution which is close to the equilibrium state for any moment of time.
The motion of a fixed mass of a viscous compressible heat conducting capillary fluid is examined. Assuming that the initial data are sufficiently close to a constant state and the external force vanishes we prove the existence of a global-in-time solution which is close to the constant state for any moment of time. Moreover, we present an analogous result for the case of a barotropic viscous compressible fluid.
Currently displaying 1861 –
1880 of
3487