The search session has expired. Please query the service again.
Displaying 521 –
540 of
619
The aim of the topological asymptotic analysis is to provide an asymptotic expansion of a shape functional with respect to the size of a small inclusion inserted inside the domain. The main field of application is shape optimization. This paper addresses the case of the steady-state Navier-Stokes equations for an incompressible fluid and a no-slip condition prescribed on the boundary of an arbitrary shaped obstacle. The two and three dimensional cases are treated for several examples of cost functional...
The aim of the topological asymptotic analysis is to provide an asymptotic expansion of a shape functional with respect to the size of a small inclusion inserted inside the domain. The main field of application is shape optimization. This paper addresses the case of the steady-state Navier-Stokes equations for an incompressible fluid and a no-slip condition prescribed on the boundary of an arbitrary shaped obstacle. The two and three dimensional cases are treated for several examples of cost functional...
We semi-discretize in space a time-dependent Navier-Stokes system on a three-dimensional polyhedron by finite-elements schemes defined on two grids. In the first step, the fully non-linear problem is semi-discretized on a coarse grid, with mesh-size . In the second step, the problem is linearized by substituting into the non-linear term, the velocity computed at step one, and the linearized problem is semi-discretized on a fine grid with mesh-size . This approach is motivated by the fact that,...
We semi-discretize in space a time-dependent Navier-Stokes system
on a three-dimensional polyhedron by finite-elements schemes
defined on two grids. In the first step, the fully non-linear
problem is semi-discretized on a coarse grid, with mesh-size H.
In the second step, the problem is linearized by substituting
into the non-linear term, the velocity uH computed at step
one, and the linearized problem is semi-discretized on a fine
grid with mesh-size h. This approach is motivated by the fact
that,...
We study pressure-driven, two-layer flow in inclined channels with high density and
viscosity contrasts. We use a combination of asymptotic reduction, boundary-layer theory and the
Karman-Polhausen approximation to derive evolution equations that describe the interfacial dynamics.
Two distinguished limits are considered: where the viscosity ratio is small with density
ratios of order unity, and where both density and viscosity ratios are small. The evolution equations
account for the presence of...
In this article, we present a new two-level stabilized nonconforming finite elements method for the two dimensional Stokes problem. This method is based on a local Gauss integration technique and the mixed nonconforming finite element of the pair (nonconforming linear element for the velocity, conforming linear element for the pressure). The two-level stabilized finite element method involves solving a small stabilized Stokes problem on a coarse mesh with mesh size and a large stabilized Stokes...
Currently displaying 521 –
540 of
619